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CAPITULO 1

Introduccion

Con el desarrollo industrial y ehpido crecimiento de la poblaxi mundial, se ha mostrado
evidente la necesidad tanto de controlar como de usar eficientemente los recursos naturales
de la Tierra, a@scomo de monitorizar los cambios claticos que eéin teniendo lugar. Uno

de los elementos determinantes de dichos cambiostitios a escala global, a la vez que
afectado por el desarrollo industrial y la exp@msde la civilizacbn, es la cubierta vegetal

de la superficie terrestre. La cantidad total de masa vegetal se conoce como biomasa, y
constituye urindice de gran int@&s en estos estudios.

Para poder monitorizar de forma global la biomasa terrestre, o bié@n pgametro
asociado (volumen de madera aprovechable para la consétnyediura de las plantagrea
de la base de loarboles, etc.), se han venido implementando sistemas de teledateoni
variadas tecnoldgs. Los sistemas radar han sido loasmampliamente usados gracias a
su independencia del sol como fuente de ilumidagy a su capacidad para operar bajo
cualquier situadn climatica. Adenas, la informadn proporcionada por los sensores de
microondas es complementaria respecto a la obtenida con instrumentos que trabajan en otras
bandas, como infrarrojosapticos.

La configuraddn que mejor se adapta a estas aplicaciones es el radar de apertura
sintetica (SAR), que se emplea para generar mapas de reflectividad de la superficie terrestre.
En losultimos dios se esin realizando muchas caniijzes de medidas dedicadas a vegétaci
con radares aerotransportados o desddiatEl objetivo de dichas campas es niltiple:
obtencon de mapas de zonas forestales y cultivos, clasificade diferentes especies, esti-
macbn de paametros para medir la biomasa, monitoribacdel crecimiento de cosechas,
etc. Sea cual sea la aplicanifinal, el estudio de los datos proporcionados por un SAR es
muy complicado debido a la complejidad del proceso de inteya@mtre las ondas electro-
magreticas y la vegetaon.

En lastltimas cecadas se ha realizado un gran esfuerzo en el desarrollo de modelos de
dispersbn electromagetica para cubiertas vegetaled,@smo en la construcon de algorit-
mos para estimar pametros ifsicos de las plantas a partir de medidas hechas con radar. Sin
embargo, la aplicabn de estastcnicas SAR de teledetedaoi de bosques, cosechas y otras



2 Introducci 6n

cubiertas vegetales ha tenido &xito bastante limitado hasta la fecha. Latmaprincipal es
la falta de suficientes conocimiento y comprénsile los mecanismos de interaatigue se
producen entre las ondas electrométipas y los elementos que constituyen la vegétaci

A todo esto hay queigdir que las medidas en condiciones naturales son muy com-
plejas. Las dificultades que se encuentran pueden clasificarse en tres tipos. En primer lu-
gar, es necesario medir situ las magnitudesi$icas que se consideren relevantes para la
comparadn posterior (comnmente conocidas congyound truth. En segundo lugar, la
realizacon de medidas con sistemas radar requiere un control y cabbracecisos del
equipamiento a utilizar, tareas no siempaeilies debido a imprecisiones en las trayectorias
descritas por el sensor, problemas de derivas de los equipos, etc. Finalmente, efectos tales
como variaciones de las condiciones dimas, presencia de interferencias de RF, cambios
no previstos de las condiciones del suelo, etc. pueden influenciar notablemente las medidas.
Por todo ello los datos experimentales adquiridos en estas condiciones pueden conducir a
interpretaciones ebneas y, por lo tanto, a conclusiones equivocadas acerca de la escena de
interés. En cambio, si las medidas se llevan a cabo en ama@ anecoica en condiciones
perfectamente controladas, se puede realizar afisésrcompleto y preciso de muestras
aisladas sin la influencia de todas estas potenciales fuentes de erroas\@smposible se-
leccionar de modo flexible la banda de frecuencia yalogulos de incidencia que interesen
para cada experimento,iaomo ecualizar con gran predsi los datos, incluso si son po-
larimétricos. Como consecuencia, la interpretadie los resultados esassimple y menos
condicionada por efectos indeseados.

Existe unara@n adicional para realizar medidas de vegétacion radares eramaras
anecoicas. Desde el punto de vista metodiio, el desarrollo de modelos agteneralmente
admitido como un medio eficiente de complementar los experimentos. Al finy al cabo, no es
realista tratar de realizar experimentos cubriendo todos los tipos de végetacindiciones
posibles, aisque se deben desarrollar modelos para complementarlos. Para crear los mode-
los, sus fundamentossicos deben ser comprendidos totalmente, y las relaciones entre las
variables del modelo y los valores de salida deben estar bien cuantificadas. En el caso con-
creto que nos ocupa, se palproceder paso a paso midiendo en laboratorio las respuestas
de los componentes elementales deddmles, luega@rboles enteros y, finalmente, grupos
de plantas d@rboles. Pofiltimo, cuando se llevaran a cabo medidas en condiciones natu-
rales, la influencia del ambiente y del sistema pder identificada por comparanicon
los resultados previos del laboratorio.

En este contexto, éturopean Microwave Signature LaboratofigMSL) del Space
Applications Institutg SAI), perteneciente aloint Research Cent@IRC) de la Comigin
Europea, en Ispra, Italia, es un laboratorio con carestiessiinicas para tales experimentos.

El personal del EMSL ha venido colaborando con grupos de trabajo punteros dedicados a la
teledetec@n con sensores activos de microondas con el fin de poner dmomnocimien-

tos y tratar de identificar aquellos aspectos que necesitan una \afidagierimental en
condiciones controladas. La tarea del EMSL es @lo proveer a la comunidad ciéfita

datos de gran calidad obtenidos para una amplia variedad de muestras, sidm tiampke-

mentar los rdtodos o écnicas que han sido propuestoasmecientemente y que requieren

una comprobaéin experimental antes de proseguir con su estudio 0 antes de adaptar instru-



mentaocdn y equipos de sensores operativos a est@sdas. El trabajo presentado en esta
tesis ha sido desarrollado dentro de este marco global.

Antes de proseguir, es importante aclarar en este punto el objetivo de la tesis. Hasta
la fecha, la mayda de investigaciones acerca de la disgars&lectromagética producida
por la vegetad@n se han concentrado en el llamaoblema directpes decir, en el mode-
lado de la vegetabn para estimar o anticipar gwalores se obtenaln luego al medir con
un radar. La construogn de estos modelos, aitalos y/o nunéricos, puede considerarse
bastante evolucionada. Sin embargo, la aplmacie dichos modelos aroblema inverso
(esto es, a la estimam de paametros fsicos de la escena usando las medidas radar como
valores de entrada) es muy limitada. Una de las principales causas de estadimetata
falta de verdadero significadtsfco, en rela@n a la morfologa o estructura natural de la
vegetadbn, de las magnitudes empleadas hasta ahora. Tal como se explica éxiospr
cagtulos, la forma en que la polarizéci de los campos dispersados depende de la arquitec-
tura de las plantas es una caraistiita fundamental que debe ser explotada para afrontar el
problema inverso con garaas deéxito. De forma escueta, el objetivo global de esta tesis es
mostrar la contribuéin que la medida de las caragsticas de polarizaon de la sgal radar
(una £cnica conocida como polarimigtradar) puede ofrecer en la sofutide problemas
inversos existentes en teledetéccde vegetadin.

La polarimetra radar ya ha demostrado su utilidad en varias aplicacmragativas
tales como clasificadn, mejora del contraste en &genes, etc. Su aplicaci a problemas
inversos o de estimamn ha atreado mucha atendin Gltimamente, y varias investigaciones re-
alizadas recientemente han mostrado su potencial. Sin embargo, aungue lamétenatica
de la polarimetfia es muy robusta, la comunidad cidint no esh plenamente convencida de
sus caractésticastnicas ni de la posibilidad real de implementarla de fornétiza. Por
lo tanto, la meta final de esta tesis es probar la contr@ouitindamental que la polarimeitr
puede tener en teledetegoicuantitativade vegetadn. De acuerdo con el esjpu del
EMSL, se ponda especiaénfasis en los resultados experimentales obtenidos en laboratorio.

Una vez se ha enunciado el objetivo global de la tesis, las metas concretas y las con-
tribuciones originales de la misma se describen a contiGoactal como indica elitulo,
y procediendo de manera normal en investigackel trabajo ha sido dividido en dos eta-
pas sucesivas: un alisis previo para caracterizar las muestras y una consiguiente prueba
de diferentesécnicas de estimam aplicadas a dichas muestras. La etapa ddisas co-
rresponde al examen de un conjunto de medidas realizadas en el EMSL usando muestras
vegetales. Este examen @@resentado de forma descriptiva y trata de mostraracson
vistos por el radar lo&rboles o las plantas. Para ello, los datos adquirid@nseatados
mediante écnicas de descompogiai polarinetrica. Estasécnicas de descomposiai per-
miten, bajo ciertas condiciones, identificar los mecanismos de diépgnsEsentes dentro del
volumen ocupado por las muestras. Los experimentos se efatitam tres configuraciones
diferentes, que proporcionan tres tipos de resultados con infamacmplementaria:

1. Graficas en el dominio de la frecuencia: se calculan a partir de datos de dispersi
puros y muestran los mecanismos de disparsiominantes en la planta considerada
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como conjunto. Se analizandbmo vaian los resultados con la banda de frecuencias y
la geometia de la medidagngulo de incidencia). Se establécena generalizaoh a
medidas de campo en condiciones naturales.

2. Graficas en el dominio del tiempo: se obtienen a partir de la varnage la reflec-
tividad con la coordenada ddant rangeo distancia a la antena. Estos resultados de-
beran ilustrar la equivalencia entre la vegetacy un volumen multicapa, incluyendo
la posicbn y espesor de cada capa y su comportamiento pa@#ion. Adenas, se
definira y media un coeficiente de extirim diferencial entre polarizaciones. Este
coeficiente es muy importante en algunos algoritmos de estimacbomo la écnica
para encontrar la altura de la vegetacimediante interferomé#r polarinétrica que se
presenta ras adelante.

3. Imagenes bi- y tridimiensionales: agenes polarigtricas de alta resolumi obtenidas
mediante SAR inverso (ISAR). Estasagenes permiten la identificéci de diferentes
partes de la muestra en la estructura tridimensional, y sus respectivas contribuciones
polarimétricas tamt#n pueden obtenerse mediaré@erticas de descompogia.

Estos experimentos constituyen un paso previo necesario para enténdefunciona la
polarimetia cuando se aplica a la vegetatiy por g los netodos que se presentarasn
adelante eén bien fundados. Poi mismos estos experimentos ta@ison importantes
para explicar la interacon entre el campo incidente y la vegetatia$ como la diferente
respuesta de distintas partes de las plarﬁam es el primer trabajo aparecido en la literatura
donde las citadagtnicas de descompogiai se han aplicado a datos de laboratorio.

La segunda parte de la investigatidescrita en esta tesis consiste en la val@aci
experimental de dos algoritmos de resabucide problemas inversos. El primero ha sido
diseéiado para estimar la forma y la orientacide las partulas elementales que componen
la estructura de la vegetéci en ciertos casos. Este algoritmo es una contréloucriginal
de esta tesis, aunque fue formulado e implementado en colatmoi@m Dr. S. R. Cloude.
La segundadécnica que se ha probado es la estiacie la altura de la vegatéo mediante
interferometra SAR polaringtrica. Este ratodo revolucionario eatbasado en la formam
de varios interferogramas de la misma escena, cada uno de ellos asociado a un mecanismo
de dispergin distinto. La teda basica necesaria para la generalibadie la interferomeia
SAR al caso polarigtrico fue formulada originalmente por Dr. S. R. Cloude y Dr. K. P. Pa-
pathanassiou. En esta tesis, el proceso a seguir en la estimsa&cexplica detalladamente.
Adenmas, los resultados presentadosiapn la primera comparao con datos dground
truth que ha aparecido en la literatura.

Finalmente, se presenéaptra contribuédn original de esta tesis. Consiste en la
formulacbn, implementadn y validacon de un nuevo &todo eficiente para reconstruir
imagenes radar tridimensionales. Este algoritmo se ha desarrollado para geagearam
de alta resoluéin de objetos complejos y éstliséiado especialmente para el modo de fun-
cionamiento y geomét del EMSL.

El material de la tesis éstorganizado como sigue. En el dao 2 se presenta un



repaso bibliogafico acerca de los temas tratados en el resto del texto. Se ha prestado especial
atencon a los puntos donde esta tesis puede suponer una cortirilgignificativa. Despas,

en el cajitulo 3 se define la formuladn que se necesitaen las siguientes partes de la tesis.
Toda la teora polaringétrica ha sido ya publicada en otras referencias, pero aquellos aspectos
directamente relacionados con la tesis han sido reescritos en eistiocpgra hacer la tesis
autocontenida. Los tres daylos siguientes forman elicleo de la tesis. En primer lugar, en

el captulo 4 se describe las caracigticas y modo de funcionamiento del EMSL, las mues-
tras vegetales que se empkeaen las medidas, y el alisis de los resultados experimentales
obtenidos mediante el uso dechicas de descompodiai polarinétrica. Mas adelante, el
algoritmo de invergin dedicado a la forma y orientéaci de los componentes elementales de

las plantas se describe en el tafp 5, donde tamt@n se muestran resultados experimen-
tales. Algunas@rmulas auxiliares y resultados intermedios necesarios para el desarrollo de
este nétodo se recogen en el@pdiceB. En tercer lugar, el @odo de invergin que trata

la estimaadbn de la altura de cubiertas vegetales mediante la combima interferome-

tria y polarimetia se ha validado experimentalmente en eitcé@p6. En dicho cafiulo se
repasa la formuladn del nétodo y se presentan resultados comparadogymmmd truth

El cagtulo 7 tiene un caacter diferente al resto de la tesis, puesto que rioreticionado
directamente con la polarimér Enél se ilustra un nuevo algoritmo de reconstroocile
imagenes SAR que ha sido desarrollado por el autor de esta tesis, y que se ha empleado
para calcular las iggenes tridimensionales empleadas en dkalap4. Ha sido inclido en

la tesis porque supone una contrilircioriginal, y porque fue desarrollado con el mismo
proposito que el resto de la tesis. Esteitalp esh complementado por el material recogido

en los agndicesC y D. En ellos se describe la formulaa correspondiente a la extedisi

del algoritmo a geométis ciindrica y esérica, respectivamente, adasnde importantes
detalles de la implementami eficiente de dicha extesi. Para terminar, las conclusiones

de la tesis aparecen en el gajo 8, donde taml@#n se sugieren variamkas futuras de in-
vestigacbn como continuaéin al trabajo presentado dquDespws de las conclusiones se

ha inclido una lista con las publicaciones en revistas y congresos internacionales que se
han ido generando durante el desarrollo de la presente tesisediapA muestra un par

de tablas con abreviaciones empleadas en la tesis y con la nomenclatura de las bandas de
frecuencia.
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CHAPTER1

Introduction

HE industrial development and the rapid growth of the world population have revealed

an increasing necessity for control and efficient management of the earth’s natural re-
sources, in addition to a continuous monitoring of the environmental and climate changes
that are taking place. One of the major determinants of the weather conditions at global
scale, which in turn is affected by the modern civilization expansion, is the vegetation cover
on the earth’s surface. The main index of interest of this cover is the biomass, or total quantity
of vegetation mass on the earth’s surface.

The remote monitoring of biomass, or related parameters (timber volume, plants
height, basal area, etc.), has been performed by means of remote sensing systems with
various technologies. Due to their operation capability in all-weather conditions and their
independence of the sun as a source of illumination, radar systems are the most widely used
ones. Moreover, the information provided by microwave sensors is complementary to that
obtained by instruments working in other spectral regions, such as visible and infrared.

The radar configuration specially adapted to this application is the synthetic aperture
radar (SAR), which is extensively employed for obtaining reflectivity maps of the earth’s
surface. In recent years an increasing number of measurement campaigns dedicated to veg-
etation has been carried out from SAR’s mounted in air- and spaceborne platforms. The
objectives of these campaigns are multiple: forests and crop mapping, terrain classification
into different vegetation kinds, monitoring of crop growth, retrieval of parameters for esti-
mating biomass, and so on. Whatever the final application is, the analysis of SAR data is
complicated because the interaction between electromagnetic waves and vegetation is a very
complex process.

Over the past decades, much effort has been devoted to the development of scatter-
ing models of vegetation and to the construction of algorithms for estimation of biophysical
parameters by means of radar measurements. However, the application of SAR systems to
remote sensing of forestry, crops and other vegetation covers has shown limited success so
far. The main reason is the lack of sufficient knowledge and understanding of the interac-
tion mechanisms between the incident electromagnetic waves and the scatterers inside the
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vegetation volume.

In addition, measurements of vegetation cover under natural conditions are complex,
and three kinds of difficulties are usually encountered. First, one has to define and mea-
sure the relevant biophysical parameters (i.e., ground truth data); second, the deployment
of the required instrumentation associated with outdoor radar measurements is complicated,
including calibration procedures, working constraints of the platform in which the sensor is
mounted, etc; and third, effects such as varying weather conditions, presence of RF inter-
fering signals, unknown variations of the local topography and soil conditions may heavily
influence the measurement. As a result, experimental data acquired under these conditions
may not be interpreted properly and consequently may lead to wrong conclusions concern-
ing the vegetation cover under study. Alternatively, when running the measurements in an
anechoic chamber under laboratory conditions, all relevant measurement parameters can be
fully controlled and a complete and accurate analysis of an isolated sample can be carried
out. We can also freely select the frequency range and incidence angles of interest, and the
radar backscatter can be accurately equalized by applying a single reference fully polarimet-
ric calibration. Thus, leading to a simpler interpretation of the results.

There is an additional reason for carrying out radar measurements on vegetation in
laboratory conditions. From the methodological point of view, it is acknowledged that mod-
eling must complement the experimental approaches for the sake of efficiency. In other
words, it is not realistic attempting to cover with experiments all the wide variety of vegeta-
tion types and environment conditions, so vegetation models must be developed. For doing
that, the physical foundations of the models should be fully understood, and the relation-
ships between input and output values accurately quantified. Therefore, proceeding step by
step, it is important to measure under laboratory conditions the responses of elementary tree
components, single trees and plants, and groups of them. Finally, trees in natural conditions
should be measured, and the influence of the environment could be identified by comparison
with previous laboratory results.

In this context, the European Microwave Signature Laboratory (EMSL) of the Space
Applications Institute (SAIl) at the Joint Research Centre of the European Commission (JRC),
Ispra, Italy, is an unique facility for such experiments. The EMSL team has collaborated with
outstanding research groups worldwide in the identification of those aspects that require an
experimental validation in controlled conditions. The task of the EMSL is not only to provide
high-quality data from a variety of targets, but to implement state-of-the-art methods and
techniques that have been proposed and need to be tested. These tests constitute an important
previous step before the application of any technique to conventional air- or spaceborne
systems, and also before further enhancements can be developed. They are also useful for
anticipating requirements and ideal working parameters in the design of future systems. The
work presented in this thesis is embodied within this general framework.

A remark must be stated at this point in order to clarify the scope of the present thesis.
To date, most research concerning the scattering from vegetation has been concentrated on
thedirect problemi.e. the modeling of vegetation for estimating its response to an illuminat-
ing radar signal. The construction of analytical and/or numerical models of vegetation from



the electromagnetic point of view has already reached maturity. However, the applicability
of these models to solve theverse problenti.e. the estimation of physical parameters of

the target by using radar measurements as inputs) is very limited. One of the main causes of
this failure is the lack of physical meaning (in relation to the natural morphology and struc-
ture of vegetation) of the observables used so far. As will be explained in next chapters, the
polarization dependence of the scattered fields on the vegetation architecture is a key feature
that must be exploited to face the inverse problem with guarantees of success. In summary,
the global objective of this thesis is to show the contribution that the measurement of the po-
larization characteristics of the radar signal (a general technique known as radar polarimetry)
can provide for the solution of inverse problems regarding vegetation remote sensing.

Radar polarimetry has already shown its usefulness in terrain classification, image
contrast enhancement, and otlogralitative applications. Moreover, its application to in-
verse problems has attracted a great deal of attention lately, and some recent researches have
illustrated its potentials. Nevertheless, although the mathematical foundations of polarime-
try are very robust, the scientific community is not fully convinced of its uniqueness and
practical implementation in real situations. Therefore, the final aim of the present thesis is to
prove the important contribution of polarimetryguantitativeremote sensing of vegetation.
In accordance with the spirit of the EMSL, the focus will be placed on experimental results.

Once the global objective of the present thesis has been stated, the specific goals and
original contributions are described in the following. Proceeding in the usual manner in re-
search, and as the title indicates, the work has been divided into two sequential stages: a
previous analysis or inspection, and an ensuing test of estimation techniques. The analysis
stage corresponds to the study of a set of measurements carried out in the EMSL on vege-
tation samples. This study will be presented in a descriptive way, and tries to show how the
plants or trees are seen by the radar. For doing this, decomposition theories will be applied to
full polarimetric data. These decomposition methods allow, under certain conditions, identi-
ficaton of the scattering mechanisms that are present in the targets volume. The experiments
will be performed for three configurations, thus resulting in three kinds of data that will
provide complementary information:

1. Frequency domain plots: computed from pure scatterometric data, yield the dominant
scattering mechanisms of the target as a whole. The dependence on the frequency band
and measurement geometry (incidence angles) will be analyzed, and a generalization
to field measurements under natural conditions will be established.

2. Time domain profiles: calculated by reconstructing reflectivity functions versus the
slant-range coordinate. They should illustrate the equivalence between vegetation and
a multilayer volume, including the position and depth of each layer and its scattering
behavior. Moreover, a differential extinction coefficient between polarizations will be
defined and measured by using this technique. This coefficient is of prime importance
for some inverse algorithms, like the estimation of vegetation height by polarimetric
SAR interferometry that will be presented later.

3. Two- and three-dimensional images: high-resolution polarimetric reflectivity images
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obtained by means of inverse SAR (ISAR) scanning geometries. These images will
enable the identification of different parts within the target three-dimensional struc-

ture, and their respective polarimetric contributions will be derived by decomposition

techniques as well.

These experiments constitute a necessary previous step for understanding how polarimetry
works for vegetation, and why the inversion methods presented later are well founded. By
itself, this step is also important for gaining an insight on the interaction between waves and
vegetation and on the different responses from different parts of the plants. This is the first
work appeared in the literature where such decomposition techniques have been applied to
laboratory data.

The second stage of the work presented in this thesis consists in the experimental
validation of two algorithms for inverse problems. The first algorithm will be applied to esti-
mating the shape and the orientation of elementary particles into which a vegetation volume
can be decomposed under certain conditions. This algorithm is an original contribution of
this thesis, though it was formulated and developed in collaboration with Dr. S. R. Cloude.
The second technique to be tested is the retrieval of vegetation height by means of polarimet-
ric SAR interferometry. This revolutionary technique is based on the formation of various
interferograms of the same scene, each of them associated with a different scattering mech-
anism. The basic theory about the generalization of SAR interferometry to the polarimetric
case was originally formulated by Dr. S. R. Cloude and Dr. K. P. Papathanassiou. In this
thesis, the estimation procedure will be thoroughly explained, and it will be validated for the
first time with ground truth data.

Finally, there is an additional original contribution of this thesis. It is the formulation,
implementation and validation of a new and efficient algorithm for three-dimensional radar
imaging. This algorithm will be developed in order to obtain high-resolution radar images of
complex volume targets, and will be specially suited for the geometry and operating modes
of the EMSL.

The material of the thesis is organized as follows. Chapfesents a bibliographi-
cal review about the topics that will be addressed in the text. Special attention is payed on the
points where this thesis can contribute significantly. The formulation that will be needed in
the rest of the thesis is defined in Cha@ell the polarimetric theory has been published
already in the literature, but the issues directly related with the thesis are rewritten in this
chapter for the sake of completeness. The next three chapters comprise the nucleus of the
thesis. Firstly, Chaptet describes the operating mode and characteristics of the EMSL, the
vegetation targets employed in the laboratory measurements, and the analysis of the exper-
imental results obtained by polarimetric decomposition techniques. Secondly, the inversion
algorithm for estimating the shape and orientation of the basic particles into which vege-
tation can be decomposed is presented and tested in Clap8yme auxiliary formulas
and results used in the derivation of this inversion method are described in Apinihix
third place, an inversion method for retrieving the height of vegetation covers by using po-
larimetry in combination with interferometry is experimentally validated in Chaptdhis
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chapter reviews the formulation of the method and describes laboratory results compared
with ground truth. Chapter has a different character from the rest of the thesis, since it is
not directly related to polarimetry. This chapter describes a new imaging algorithm for SAR
that has been developed by the present author, and that has been used for computing the
three-dimensional images presented in Chafitérhas been included in the thesis because

it is an original contribution and was developed with the same final purpose of the rest of the
thesis. Appendice§ andD present details of the formulation needed to extend this imaging
algorithm to cylindrical and spherical scanning geometries, and also gives particulars about
the implementation of this extension. Finally, the conclusions of the thesis are shown in
Chapter8, where some future fields of research are also suggested as a continuation of the
work presented here. A list with the publications in journals and conference proceedings that
have been written during the development of this thesis is presented after the conclusions.
AppendixA consists of two tables with band designations and some abbreviations employed
in the text.
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CHAPTER 2

State of the Art

HE aim of this chapter is to present a bibliographical review of the approaches em-

ployed so far for analyzing the microwave scattering by vegetation and for solving
problems related to the estimation of vegetation physical parameters. The focus is also placed
on the historical development of radar polarimetry for remote sensing applications, and on
the role played by laboratory experiments on vegetation radar studies. Therefore, the goal
of this chapter is not to perform a comprehensive survey of the history and progress of radar
remote sensing of the earth, but to focus on the topics directly related with this thesis. The
interested reader can find an excellent review about microwave remote sensing of the earth
in [1]-[3], where there is material concerning history, mathematical models, applications,
hardware, etc.

This chapter has been divided into several sections for helping the reader in the identi-
fication of the different subjects that are considered later in the text. Firstly, a brief historical
review concerning radar polarimetry is presented in Se@idn A specific topic of radar
polarimetry, called target decomposition theory, is dealt with in Se@i@n It has been
treated apart from basic polarimetry in order to concentrate on these methods, which really
constitute the foundations of the application of polarimetry to inverse remote sensing. Then,
Section2.3 describes an important number of tests performed on vegetation by means of
radar measurements in indoor facilities and outdoor controlled environments. The objective
of this section, besides completeness, is to justify the use of laboratory experiments for the
validation of remote sensing techniques, and, more importantly, to show the originality of the
laboratory study carried out in the present thesis. Then, known approaches to the solution of
inverse problems about vegetation are shown in Se@tidénMoreover, this section focuses
on techniques, based on SAR data, for retrieving the height of vegetation covers. Finally, a
global overview of radar imaging algorithms is outlined in Sec&ds where the necessity
of the new algorithm presented in Chapfas demonstrated.
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2.1 Radar Polarimetry

Some comprehensive reviews of the history of radar polarimetry can be found elsewhere in
the literature 4]-[7]. However, it is worthwhile giving in a few lines some bibliographical
references where one can find details about basic radar polarimetry, from the early discover-
ies to recent developments.

The foundations of polarimetry must be searched for in the nature. Polarization ef-
fects are apparent in nature, and there are also many historical examples of the practical
utilization of polarization properties of materials. Regarding its application to radar, the
early stages began with the development of radar technologies and, to define a date, with the
progress that accompanied the World War 1. The first work on specific radar polarimetry is
attributed to Sinclair§], after whom the scattering matrix is named. It is known that the
information provided by a fully polarimetric radar can be arranged in matrix form. In this
way, a single data is & x 2 complex scattering matrix (simply namedattering matrix
or Sinclair matriy) whose entries are the measured reflectivities for the four combinations
of transmitted-received polarizations in an orthogonal basis. Note that all the matrix defini-
tions and related formulation are explained in Chafteérhe scattering matrix is somewhat
equivalent to the Jones matrig][ that has been defined for optical problems to characterize
transformations of light polarization (se&( 11]).

Later, an important pioneering work was done by Kennaugdh jwho defined the
concept of optimal polarization for a target in the monostatic case, and whose ideas were
the basis of further advances throughout the fifties and sixties. From that period it is impor-
tant to note the works by Rumse¥d on the study of the transmission between elliptically
polarized antennas by making use of the impedance concept that appears in transmission
lines; Deschampslf, 15 on the geometrical representation of polarization on the Paincar
spheré; Kales [L6] on the polarization efficiency concept; and Bohnéd [on experimental
issues. There were also some advances in practical applications about the information pro-
vided by the scattering matrices. For example, Grat8sghowed that the scattering matrix
can be reduced to diagonal form by sub-group transformations, and this eigenanalysis was
further employed by Bickell[9]-[ 21] to define some quantities that entirely specify the scat-
tered return from a body. By using the Poireaphere, Copelan@®] demonstrated how
to classify a target according to its polarization transforming properties, whereas Lowen-
schuss 23] postulated that it is possible to distinguish between objects of similar shape by
looking at polarization responses.

The next important milestone in radar polarimetry was the work conducted by Huy-
nen @] on target decomposition theory. His contribution constituted the first attempt of
generalization of decomposition techniques and renewed the interest of the remote sensing
community on radar polarimetry. The principles of target decomposition theory and a bibli-
ographical review to date are detailed in next section.

INote that Poincdr showed that all polarization states can be representated on the Riemann sphere, but this
original idea made the following literature to rename the sphere as Peisphere instead of Riemann’s one.
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More recently, loannidisZ4] reported a method to use polarization to discriminate
between radar targets and background clutter. The importance of polarization in various
inverse problems at different frequency bands, and with many applications, was theoretically
shown by Boerneet al.[25]. Two reviews about polarization diversity in radar were also
presented ing6, 27).

The understanding in the variation of the scattering coefficients with polarization in-
creased with the introduction by van Zst al. [28] of the concept of wave synthesis and a
new way to display the polarization dependence of the radar cross section, called polarization
signatures. With those ideas, the polarization characteristics of a scene can be synthesized
and studied at any possible polarization by only measuring at two orthogonal polarizations.
These studies, mainly based on two-dimensional plots, were extensively employed in suc-
cessive years for analyzing the scattering mechanisms present in natural scenes.

Apart from target decomposition, there have been more recent notable developments
in aspects regarding radar polarimetry. Some important workshops focused on polarimetry
have been celebrated in last years, where the discussions and contributions from many au-
thors have provided an important advance in this technique 2$p¢32]). Moreover, two
useful books have been published, illustrating the early applications of radar polarimetry to
remote sensing of the earth’s cov@B] 34], and including theoretical modeling of natural
targets, operational aspects of polarimetric SAR’s and examples with real data. Finally, it
is important to cite contributions from some authors to calibration issues: WiesBgck [
Freeman 36]-[ 38], van Zyl [39], and Saraband#[0]-[43].

2.2 Decomposition Theory

The main objective in radar remote sensing is to extract physical information about any
natural target by observing the microwave scattering. Natural targets, like vegetation, are
generally random media with surface and volume structures. The interactions of waves with
scatterers in a random medium is a complex process that depends on: 1) geometrical at-
tributes of the constituent particles, such as size, shape, and orientation distributions, 2)
dielectric properties of the particles, and 3) particle arrangement or target architecture. All
three factors are usually grouped in a single term calietectric geometry Although the
physical parameters to be retrieved are usually a few gross indicators, such as vertical height,
density or biomass, the scattering observations are sensitive to a much larger number of tar-
get attributes. As a result, instead of only obtaining the parameters of interest, all the fine
characteristics must be extracted or taken into account. This implies that a large number of
radar measurements are needed and, more importantly, that those observations must provide
independent information in order to facilitate the inversion procedure.

The ways to increase the number of independent radar observations have evolved with
the advances in radar technology. Currently there are three standard approaches for achiev-
ing this objective with SAR data: multifrequency, multipolarization and interferometry. For
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example, the application of these approaches to the estimation of vegetation height is com-
pared in Sectior2.4. In general, the inversion studies that consider observations at different
frequency bands (multifrequency) are mainly based on empirical rules and, consequently,
are strongly dependent on the site under study and are not easily extrapolated to different
scenarios. The same can be stated for the early methods that made use of multipolarization
data or SAR interferograms. Those early techniques were based on parameters such as dif-
ferences or ratios between HH and VV power responses, comparisons between co-polarized
and cross-polarized backscatter returns, and the like. However, when fully polarimetric SAR
data are acquired, a great step forward can be done by using the polarimetric information in
a rigorous way.

As outlined before, the information provided by a fully polarimetric radar can be ar-
ranged in matrix form, so a scattering matrix is the smallest information unity. Since the
scene often exhibits a natural variability in the scattering properties, an averaging is needed
for a correct interpretation of the results. This averaging can be performed in a coherent
or incoherent mode. The coherent mode yields an average scattering matrix, whereas the
incoherent one results in a Stokes or covariance matrix. Note again that all the formulation
is detailed in Chapte3. At this point, there are two aspects to be highlighted. Firstly, since
vegetation has a strongly anisotropic physical structure, it produces changes in the polariza-
tion of the scattered fields. These changes depend on the physical attributes outlined above.
In second place, there exists a robust and complete mathematical theory for characterizing
polarization through the cited matrices and, more importantly, for relating different scatter-
ing behaviors to different physical components of vegetation. These ideas form the core of
the Target Decomposition (TD) theory. In summary, the aim of TD is to decompose or ex-
press such an average matrix into a sum of independent matrices representing independent
elements, and to associate a physical mechanism with each element. This decomposition
leads to an easier interpretation of the scattering processes and to a simplified approach in
the extraction of biophysical parameters of the scene.

The first documented example of such a decomposition appearedinwWhere
Chandrasekhar proposed the decomposition of the scattering by a cloud of small anisotropic
particles into the sum of a conventional Rayleigh scattering term plus a randomly polarized
noise term (due to the particle anisotropy). The generalization of the TD approaches to
other scattering problems was addressed later by Huyfjers[nce then, there has been a
great interest in the formulation of TD theorems for establishing a unified scheme of anal-
ysis and a complete mathematical description of the problem in order to avoid ambiguities
and incoherences between alternative approaches. In this context, Cloude and #ttier [
published a review which, in the opinion of the present author, is an indispensable reference
for understanding the potential and mathematical rigor of these techniques. That review
not only classifies the works published to date, but also presents a unified framework using
eigenvector analysis, thus providing a rigorous comparison between them. In addition, some
forms of the proposed decompositions are applied to the interpretation of important types of
backscattering from natural targets.

Following the indications of45], TD theories can be classified according to the kind
of matrix that is effectively decomposed as a sum of matrices, and also to the type of analysis
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carried out with the averaged matrices. There are three main groups of TD theories:

e Coherent decomposition theory: a coherently averaged scattering matrix is decom-
posed as a sum of elementary matrices.

e Huynen type decompositions: a single scattering matrix (plus other secondary terms)
is extracted from the Mueller matrix, which is incoherently averaged by definition.

e Eigenvector decomposition of the covariance or coherency matrix (incoherently av-
eraged by definition, too): the eigenanalysis enables the extraction of a set of basis
vectors with statistical independence and orthogonality.

There have been many cases of the three classes in the literature, and some hybrid
approaches have also been proposed. The main example of the first class, i.e. coherent
decomposition, was formulated by Krogagér 46, 47]. He postulated the separation of
a coherently averaged scattering matrix into a weighted sum of the scattering matrices of
a sphere, a diplane and an helix. Note that, as showrij fhis particular selection of
elementary targets entails that the single components of the decomposition are not orthogonal
and that the decomposition is not basis invariant. Besides these drawbacks, the key issue of
the averaging must be pointed out. The scattered fields from a set of particles, or elementary
targets, inside a resolution cell or pixel are added coherently when received by the radar.
Hence, the measured signal is the result of the interference between all these fields, producing
scintillations and fadings. This phenomenon is known as coheatkle and must be
accounted for when dealing with data from a coherent radar (the physical origin of speckle is
described in48]). To solve this problem, which can be treated as a multiplicative noise, there
are a number of techniques available (see for instafi@ef¢r a review on speckle filtering
techniques, andsp, 51] for speckle in the specific polarimetric case), but they generally
involve an incoherent averaging to arrive at the second order statistics which are needed to
represent this type of noise. In conclusion, the TD theories based on coherent averaging
of the scattering matrix are exposed to problems due to speckle, so they are not appropriate
when applied to radar remote sensing of natural random targets like vegetation. Nonetheless,
they are still suitable when the scene is dominated by a single scattering element, or a few of
them, and a radar with high resolution is employed ($&e [

The other two classes of TD theories are based on matrices resulting from an inco-
herent averaging, thus avoiding the effect of coherent speckle. Huynen type decompositions
usually works with the Mueller matrix, whereas the eigenvector decompositions use covari-
ance or coherency matrices. As will be explained in next chapter, there is a direct relation
between all three matrices. Therefore, the key difference between these two types of TD is
not the matrix to be manipulated (they are equivalent), but the way in that the decomposition
is faced. Huynen type theories (for exampld,[4]) attempt the extraction of a single scat-
tering matrix from the averaged data, and the remainder is assigned to a distributed target or
a “noise” contribution, but not to other single scattering component. Instead, the goal of the
eigenvectors-based TD analyses is to represent the averaged data as a summation of single
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scattering mechanisms. The selection of these single scattering mechanisms is based on sta-
tistical independence between them. At first sight, the TD based on eigenvector analyses has
two fundamental advantages: 1) the eigenvalue problem is basis invariant, and 2) the solution
of the problem leads to a diagonalization of the coherency matrix, thus yielding statistical
independence between the set of scattering processes.

The development of the last class of TD theories can be considered quite recent,
since it started about the middle 1980s. The starting point was a new formalism presented
in [52] for describing depolarizing systems. This new formalism consisted in a vectorization
of the scattering matrix into a so-called target vector and, depending on the basis of the
vectorization, a corresponding coherency matrix (see more details in Cl&pt&his is
also the first example where an eigenvector decomposition of the coherency matrix was
shown. Although the physical interpretation of this theory was clear since the beginning, its
application to remote sensing still took some years. In the meantime, the complete algebraic
description of this formalism was rigorously formulated, based on group th&ar§4|, and
the TD based on the coherency matrix was demonstrated to be ubigjue [

The application of this theory to remote sensing has produced an increasing number
of publications and works that deal with this decomposition in rather different ways. Some
examples are cited in the following. 16§] the decomposition was tested with a theoretical
case of randomly oriented cylinders as a function of their shape ratio, and some multifre-
guency polarimetric radar measurements from the ocean, a clear cut and a forested area were
analyzed to find the dominant scattering mechanisms. The concept of polarization entropy
for describing the randomness of the scattering process, that was already briefly introduced
in [52], was revisited in $7] and applied to two situations: 1) the theoretical problem of
multiple scattering from a cloud of particles in the backscattering direction, as treated by
vector radiative transfer5p], and 2) numerical data from rough surfaces. Referedcg [
also establishes the interpretation of the parameters that appear when diagonalizing the co-
herency matrix as a central topic for the applicability of this TD scheme to inverse problems
in remote sensing.

The physical interpretation of the coherency or covariance matrix had also been ad-
dressed by a particular case of a Huynen type decomposition which was proposed by Free-
man B9, 60, 61]. This decomposition, based on the assumption of highly random scenes,
separated the covariance matrix into three scattering processes: two single scattering mecha-
nisms (for slightly rough surfaces and dihedral scattering respectively), and a random scatter-
ing process with no single scattering matrix representation. It was demonstratég timaft
it is not applicable to a wide range of scattering problems. However, when applied to some
observations of mature forests it has been quite useful for discrimination and classification
purposes.

Turning back to the interpretation of the different parameters that appear when the
eigenvector decomposition is performed, besides entropy, two new parameters with a physi-
cal meaning were defined later i6: an angle related to the type of scattering mechanism
(alpha), and an orientation angle of a canonical target that represents the scattering mecha-
nism (beta). Moreover6p] presents a classification scheme for polarimetric SAR images
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based on the combination of entropy and alpha. These concepts will be further described
in Chapter3. An additional parameter, called anisotropy, was propose@3hif order to

form, together with entropy and alpha, a useful feature vector (set of parameters) for training
of neural networks used in image classification. In a similar way, referé¢g@iesents a
classification procedure based on the eigenvalue spectrum measured at different frequency
bands. The main advantage of polarimetry for constructing classification schemes is that
no a priori knowledge about the scene is required because the observables have an intrinsic
physical meaning. This fact makes polarimetric data ideal for unsupervised classification, as
firstly attempted by van Zyld5].

The application of radar polarimetry to inverse problems in remote sensing is still
in its infancy, and many issues that have not been completely solved so far by traditional
techniques are now incorporating the polarimetric analysis into their formulations. A first
example is a recently developed method for remotely measuring topography and terrain az-
imuthal slopes by the sole use of polarimetric imadg&3.[ This original idea is currently
being extended to the estimation of the slope in the ground-range direction aé3jellte
remote extraction of vegetation attributes, like the shape and orientation distribution of the
elementary components (i.e., leaves and small branches), is a new example of the contribu-
tion of polarimetry in inverse problems (see Chagiger Another case where polarimetry
has drastically improved the performance of other SAR techniques is its application to in-
terferometry. The selection of an appropriate pair of scattering mechanisms to form the
interferogram between two polarimetric images enables the optimization of the interfero-
metric coherenced[/, 68, 69]. In addition, the optimization algorithm has been used for
retrieving the height of vegetation covers, as will be cited in Se@idnThe experimental
validation of this estimation technique constitutes one of the objectives of the present thesis
(see Chaptes).

2.3 Laboratory Measurements on Vegetation

The first detailed laboratory radar measurement from a vegetation sample was presented
in [70]. The experiment was performed on a solitary fir tree by means of a high-resolution
pulsed coherent radar working at X band. The main aim of the experiment was to identify
the scattering centers of the tree. The results indicated that the green outside branches were
the major sources of scattering at this band, and a significant difference in cross-section and
attenuation was found between the green and the dry branches, being higher for the green
ones, as expected. Other quantitative conclusions were obtained, but it is important to note
that the data were based on single measurements, and they were not averaged over an ensem-
ble of statistical data. The success of this early experiment entailed a great campaign of radar
measurements on vegetation in laboratory or controlled-environment conditions. Successive
investigations have shown that both attenuation and backscattering are strongly dependent
on the sample structure, including the size, shape and orientation of the components (trunk,
branches and leaves). These studies in controlled environments have been traditionally aimed
to two different vegetation covers: crops and trees. Next, some of those experiments are
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explained focusing on: analysis methods, characteristics of the radar (frequency band and
polarization), and main conclusions of each one.

The study of crops was originally designed for searching relations between microwave
backscattering and physical parameters of the crop. The latter were usually employed in
models for inferring the yields. A relation between the leaf area index (LAI) and the backscat-
tering coefficient §,) was found in J1] for crops of corn, sorghum and wheat. The LAl
determines the solar radiation intercepted by the plants in an active way, so it is of prime
importance for estimating the yields. The microwave backscattering was measured at dif-
ferent frequencies (8 to 36 GHz), and the green leaves were shown to determine the major
contribution to the total backscattering when the plants were mature. Instead, during the
early stage of growth the soil backscattering was also high, so it was difficult to separate
both contributions if no information about the stage of growth was available. The difficulties
of determining the physical properties of crops by means of backscattering coefficients were
also shown inT2]. That study presented results from crops of soybean, corn and wheat,
obtained with passive and active microwave sensors at C band. The main findings were the
different attenuations for different corn types, or even for the same type but with different
plant densities, and the importance of knowing the look direction relative to the row direction
(i.e. the observation geometry). Referent# presented an interesting study on the sources
of scattering of corn and milo crops at X band. The experiments were conducted with a high-
resolution radar for VV polarization, and two incidence angles were selegtgdertical)
and30°. In order to identify the sources of scattering and quantify the attenuation of each
component of the plants, a defoliation scheme was performed, and profiles of the RCS were
plotted as a function of height before and after the successive defoliations. By doing that,
it was found that the top leaves of a corn plant are almost isotropic scatterers and constitute
the strongest sources of backscattering for full-grown corns. For the milo plants, the main
finding was that their head usually suffers of wind displacements, thus producing fadings in
backscattering. For both species, the attenuation of each layer was successfully measured
by looking at the relative level of the ground reflection peaks. Those studies were extended
in [74] following two lines: 1) a greater coverage of wavelength, incidence and polarization,
and 2) measurements of the phase difference between HH and VV. The experiments were
performed with mature corn fields at L, C and X band, with a defoliation procedure, too.
The main conclusions were the differences in attenuation between HH and VV due to the
maize vertical stalks, and its dependence on the frequency band. It was also demonstrated
that for X band the coherent interaction between elements must be taken into account in the
interpretation of measurements.

In the case of trees, the vast variety of species with different morphologies has pro-
duced an even higher number of experiments. An ingenious approach to laboratory mea-
surements on trees was presented’is.[In this work, an L band microwave scatterometer
was employed for characterizing the backscattering from coniferous trees (a spruce tree and
a Weymouth pine) and deciduous trees (a walnut tree). This research is somewhat com-
plementary to 70], that was performed at X band instead of L band, but also includes an
ensemble averaging to account for the statistical variability of vegetation. The backscatter-
ing analyses of these trees gave the following conclusions: 1) the dominant scattering centers
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at L band for coniferous trees are the outside green branches coated with needles, regardless
of the polarization, 2) the attenuation in coniferous trees is greater for horizontal polarization
than for vertical polarization at L band, 3) for the deciduous case, deeper tree components
(such as branches, twigs, and nodes where the branches connect to the trunk) show a higher
RCS at L band than the leaf crowns of the trees, and 4) these leaves of the tree’s crown
only cause some attenuation, but their contribution to the backscattering is negligible. On
the other hand, a polarization dependence study was also carried out, leading to important
results. The experimental procedure consisted of like-polarization measurements as a func-
tion of the polarization angle, frotr (vertical) to90° (horizontal). The look direction was
always horizontal, and the experiments were repeated for two cases: illuminating the tree
with the trunk in the line of sight, and illuminating the tree avoiding the face of the trunk.
The curves of backscattering versus the polarization angle showed clear differences between
tree types, some trees exhibited peaks at certain polarizations depending on the orientation of
the branches, and asymmetries arose in correspondence to their morphology. Therefore, this
research supported the hypothesis that, at L band, a radar can work as a shape filter. How-
ever, at the same time, it demonstrated that the classical polarization combinations (HH,VV
and HV powers) are insufficient to successfully characterize vegetation because it is a very
complex medium.

Other experiments on trees and forest components are described in the following.
In [76], the same fine-resolution scatterometer used 3h\ywas employed for identifying the
major scattering sources in a few kinds of trees and shrubs at X band. This work was concen-
trated in the branches, that were illuminated obliquely to avoid the response of the trunk. For
pine trees, the needles were confirmed to cause the strongest backscatter and attenuation,
whereas the cones only contribute slightly to backscatter. For the rest of trees, the leaves
were also the main contributors to backscattering, and only when they are not present, the
fruits affect the total backscatter if they are packed in clusters. It was also shown that thick
stems scatter more than the thin ones, due to their size and water content. Moreover, the
authors noted that some particular elements of the tree structure occasionally exhibit a high
radar response if their size is comparable to the wavelength. Later, an additional work was
published on the same data but with a different objecti [the extraction of the volume
backscatter coefficient and the volume extinction coefficient. The work presentég] forf
X band, was repeated for C band irg]. It was shown that petioles and stems are much
more important than leaves for depolarization at C band, and that the scattering at this band
cannot be assumed to be simply due to leaf scattering, since the shape, size, moisture content
and relative location of branches play an important role. Another related experiment was
described inT9, 80], where small Japanese conifers were grouped in extended targets and
measured at S, C and X band. In this case, independent samples were obtained by rotating
the target, and the experiments were repeated after defoliation. The authors analyzed: 1) dif-
ferences between HH and VYV, 2) levels of the like backscatters of the three conifers, and 3)
depolarization. They showed that at S and C band the RCS changed little at all polarizations
with and without leaves, so the backscatter originated from branches and trunks even when
the leaves were present. Moreover, the presence of needle-like leaves in Japanese conifers in-
troduced a substantial amount of depolarization only at X band. Another interesting research
was conducted ind1] at C band on a peach orchard. That study attempted the characteri-
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zation of the canopy with slant range profiles, showing different extinction coefficients for
different polarizations.

An additional step forward was accomplished&2][by introducing an artificial tar-
get for determining the response of trees to some important parameters. Clearly, the physical
model cannot be taken as a direct analog of the field vegetation, though it resembled the field
forest structure in some important aspects. Rather, they used the model to improve the un-
derstanding of the contribution of individual structural elements to microwave backscatter.
The measurements were performed at C band with a multi-polarization radar. The phys-
ical parameters that showed the highest influence upon the radar signal were: forest leaf
and branch surface area, total tree biomass, and water content. In fact, the surface area of
leaves plays a greater role than leaf mass “per se”. Although stems represented the largest
biomass contribution, dry branches had considerable effect in the backscattering, probably
due to their dispersed arrangement. A similar approach was used la&&t with an small
artificial target that was measured at C and X band. In this second case, two properties of tree
backscatter were investigated: azimuthal variation and polarization dependence, both with
and without leaves for simulating the tree in summer and winter. The authors found that the
signal faded with an exponential distribution when rotating in azimuth, and no angular trend
was apparent. They also concluded that the radar backscatter was always a strong function
of the polarization angle of the transmitted signal with respect to the orientation of branches
and leaves at C band, but not at X band when leaves were present.

In the 1980s examples of scatterometric measurements from well defined areas also
exist, but carried out from aeroplanesl] 85] and helicoptersgf]. In [84], vertical profiles
of attenuation and backscattering were retrieved from forest stands at L, C and X band. The
attenuation at X band was measured by placing corner reflectors on the ground below the
forest canopies. It was shown that the attenuation is determined by the canopy architecture
and observation geometry. However, it was found that the attenuation from crowns in both
deciduous and coniferous trees was high. At L and C band, and incidence angles close to the
vertical, most of the backscatter comes from the ground, so vegetation is more transparent
at these wavelengths. A similar study was performedif &t L band, showing that a very
dense and compact pine canopy is a nearly isotropic medium. Special mention is required
of [85], where L band polarimetric SAR data were analyzed by looking at the phase differ-
ence between HH and VV polarizations. The mean of this phase difference was found to be
zero for bare soil and short agricultural vegetation, but corn fields exhibited a dependence on
the incidence angle. This dependence was justified and successfully modeled as the combi-
nation of propagation delay, direct scatter by the soil surface and specular bistatic reflection
by the stalks. Hence, phase information showed to be useful in image interpretation and
classification, a role previously reserved to the modulus of the backscattering coefficients.

As explained above, the development of physically justified theoretical models of
vegetation is a main goal of these laboratory experiments. An important feature of the models
is the characterization of every individual component of the vegetation architecture: leaves,
branches, stems, trunks, etc. Therefore, many experiments have been conducted for measur-
ing the individual responses of those single scatterers. One of the first exampl&Syéas [
where a leaf was measured at X band and a mathematical model was developed for estimat-
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ing its RCS, including the effects of the curvature of the leaf. Another early example was
presented ing(C], where measurements at X band with circularly polarized signals were car-
ried out on a leaf and a branch. Those measurements helped to validate the equivalent models
of the targets: a small disk for the leaf, and a finite dielectric cylinder for the branch. Another
detailed example of this type of measurement was presentéd,ifif]. X band experiments

were undertaken on elementary components of cylindrical shape, and were combined with
simulations. The measured scatterers were bare twigs and needles, and leafy twigs from
different coniferous species. Bare twigs with electrically small radii exhibited anisotropy in
the attenuation (differences between polarizations), and a linear relation between the attenu-
ation and the water content was demonstrated. On the other hand, the polarization behaviors
of attenuation due to leafy twigs are correlated to the general orientation distribution of the
needles.

Two other interesting laboratory tests have been published more recently. In the
first [93], some groups of small balsam fir trees with different selected densities were an-
alyzed at C band. An absorber layer was positioned under the trees for avoiding soil back-
ground effects in the results. Again, it was found that the main contribution to backscattering
at this band comes from the branches, whereas the effect of the needles is negligible. This
result was shown to be independent of the canopy density and the signal polarization. The
second recent exampl@4] was performed at X band on conifers. There, the main scatterers
were identified by means of range profiles of the RCS along the horizontal direction in the
HH and VV polarizations, and also their contribution to the final RCS was quantified. It was
found that the main scatterers are the leafy branches, and the difference between VV and HH
Is significant only in the upper portion of the tree, due to the simpler structure of the tree in
this part. Moreover, the angular trends of both VV and HH are different, and it was demon-
strated that these depend on the branch orientation distributions, i.e. the tree architecture.
Moreover, the penetration depth at X band was quantified, always being very low: between
50cmand 1 m.

With the progress in radar technologies and imaging algorithms, a new method of
analysis of laboratory measurements on vegetation has been developed in recent dates. It
consists of high resolution radar images of the vegetation samples in two and three dimen-
sions. Two examples are described here. The first 88ewWas carried out at X band on
small, almost defoliated deciduous trees. High resolution 2-D images were computed by
using a planar synthetic aperture, and covering the target with two sheets of polystyrene in
a “sandwich” configuration. The main conclusions were: 1) those branches (or portions of
them) that are dead do not appear in the images due to their low reflectivity, 2) some multiple
reflections between adjacent branches were present, 3) all the leaf clusters are well seen in
the images for all polarizations, and 4) some parts of the trees do not appear in the cross-
polar images although they have similar orientations to those others that do appear (this fact
was not justified in the paper). The second example of imaging results was carried out in
the European Signature Microwave Laboratory, and constitutes one of the starting points of
the analysis presented in Sectibd. The experiment consisted of high resolution 3-D im-
ages of a big fir treej6]. The frequency bandwidth was 1 to 5.5 GHz, thus covering L to
C band and ensuring a large amount of penetration into the tree. In agreement with previous
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experiments, it was shown that the main scatterers are the leafy branches and the difference
between VV and HH is significant only in the upper portion of the tree (produced by the
simpler structure of the tree in this part). The rest of the tree is viewed equally for HH, VV
and HV polarizations due to the randomness.

From all those experimental approaches to vegetation analysis in laboratory condi-
tions, one can conclude that many different techniques have been proposed for character-
izing the response of vegetation to microwaves, but two main drawbacks are evident: 1)
most of the experiments have been performed only in some part of the microwave spectrum,
not allowing a direct comparison between different bands, 2) with respect to polarization
responses, all the experiments carried out so far have made use of power responses at each
polarization combination (HH, VV and HV), but a joint analysis of the full polarimetric
information is missing. These are main short falls that the present thesis tries to fill in. Chap-
ter 4 will present the first results in the literature obtained with decomposition techniques
in laboratory conditions, thus accounting for full polarimetric information. In addition, a
complete analysis is carried out at all microwave bands (L, S, C and X), with a free selection
of the incidence angle and resolution. As stated in the Introduction, decomposition theory
is applied to three types of data that were obtained with different techniques that have al-
ready been used by other authors: 1) scatterometric data, 2) one-dimension profiles, and 3)
high-resolution radar images in two and three dimensions. As expected, some of the findings
already stated in previous research will be confirmed by this study, but various new contri-
butions are also illustrated. To take two examples, the propagation or attenuation properties
between any orthogonal polarizations (differential extinction coefficients), and the spatial
maps with the scattering behavior of every part of the plants.

2.4 Approaches to Inverse Problems on Vegetation

The retrieval of biophysical parameters from SAR data is a topic with more than thirty years
of history. A short, but clear and well-oriented, review of the goals already achieved and
the remaining challenges in this subject can be found®if. [ In the case of vegetation,

there have been developments in direct and inverse problems since 1970. The direct problem
consists of modeling of the scattering of vegetation by means of numerical or theoretical
methods. These methods employ some knowledge about the physical attributes of the vege-
tation target for predicting the magnitude of the scattering when an incident field is present.
In this way, the model must know two kinds of inputs for computing the scattering out-
put: 1) physical features of the plants (shape, dimensions and orientations distribution of the
particles, density of plants, soil moisture, etc.), and 2) characteristics of the incident signal
(frequency, incidence angle, etc). The inverse problem is just the retrieval or estimation of
physical parameters of interest by using radar measurements as inputs. Therefore, most in-
verse algorithms are based on a previously developed model for the vegetation cover under
study.

Making a bibliographical review of all the electromagnetic models for vegetation that
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have appeared in the literature could be an almost endless task, but some helpful indications
are stated in the following. There are two general kinds of approach in the construction of
vegetation models, namely incoherent and coherent. Incoherent approaches are based on
radiative transfer theory9f], and are the most widely used ones. To give a known example,
the most popular canopy model, MIMICSY], is based on this theory. Radiative trans-

fer can accurately predict the second moments of the radar backscatter statistics when the
medium consists of sparse scatterers that are small compared to the field correlation length
within the random medium. Unfortunately, this approach has two important shortcomings:
1) no information about the absolute phase of the scattered field can be extracted and, con-
sequently, it is useless when an interferometric analysis is attempted; and 2) this theory does
not account for the coherent effects that may exist between different scatterers. The second
drawback is determinant when working with trees and other types of vegetation since, as it
has been experimentally demonstrated in Sec®@nboth backscattering and attenuation

are significantly influenced by the morphology of the plants.

Some vegetation models based on coherent approaches have been developed in the
last decades. They can be grouped into two global types. The models of the first type con-
sider the structure of vegetation from a statistical point of view. Therefore, although taking
into account the coherent behavior of the interaction between scatterers, they only provide
the second moments of the scattered fields, thus losing the information about the absolute
phase. Several remarkable examples of this type of modelsl@ée[[L0Z. In [100, the
distorted Born approximation is used to find the mean field illuminating each scatterer, and
the backscattered fields are added coherently. A two-scale cylinder cluster is used for a
branching model to characterize soybean plantd@i][ In a similar way, a coherent model
for cultural grass canopies was describedlfid. On the other hand, the second type of
coherent approaches deals with the exact structure of a vegetation sample (a tree or a plant)
in order to provide the backscattered field with no statistical description. A good example of
this practice was presented it(J3, where a tree structure was constructed by a direct survey
of its architecture: lengths of trunk, branches and leaves, with their positions and orientation
angles. More recently, a sophisticated coherent scattering model based on fractal-generated
trees has been successfully used for modeling a deciduous forestBidhd |

The next part of this section is dedicated to describing methods used so far in inverse
problems on vegetation. As stated above, the construction of accurate models for describing
the scattering from vegetation is a complex process that depends on many parameters. There-
fore, if these models are intended to be applied in the construction of inverse techniques, they
must be simplified to models with as few input parameters as possible, so that the inversion
becomes tractable. This simplification is usually carried out by fitting polynomials or simple
curves to plots that relate output data (experimentally measured or provided by simulations
with a model) to the parameters of interest (physical attributes). Once this simplification is
achieved, the inverse problem must be solved by an optimization technique that yields the
combination of values of the physical attributes that best fit to the input data. Depending on
the complexity of the data and the selected model, and on the dimension of the parameter
space (the number of them), the optimization is more or less easy to perform.

Recent examples exist in the literature that face the solution of inverse problems on
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vegetation with many free parameters. A relevant example is presente@bripg, where

neural networks are used in the inversion process. That study examines two cases: first,
a neural network is trained by using data produced by a direct model (MIMICS) and then
solves the inverse problem as usual; second, the neural network is trained without any model,
thus only using experimental data. Results were obtained for the estimation of trunk density,
average trunk diameter and average trunk height, in aspen and loblolly pine stands. Input pa-
rameters were backscattering coefficients (VV, HH and HV) at L and C bands. This method
is computationally intensive, and its success is limited by the extent (in the experiment-
trained case) and fidelity (in the model-trained case) of the training data. The neural network
has great flexibility and can provide good results, but, in most cases, is used essentially as
a black box. This means that there is no way currently known to discern the underlying
physical processes that give rise to a determined network behavior. Alternatively, an itera-
tive gradient-based search routine was used.@¥][ In this new case the behavior of the
algorithm is derived from the physical scattering mechanisms existing within the system,
and it is also possible to monitor the decision path taken by the algorithm, thus giving a con-
trol over the reliability of the achievable results. Nevertheless, its applicability is limited to
systems with small dimensionality and, due to its model dependence, its success is subject
to the fidelity of the direct model. Finally, a promising new approach has been formulated
in [109, based on genetic algorithms for the solution of the inversion system. This method
has been successfully tested on the simultaneous inversion of tree height, trunk diameter, tree
density, branching angle, soil moisture and vegetation moisture over a test stand of red pine
forests. The input parameters were the backscattering coefficients at one polarization for
C band from two different incidence angles, and the interferometric phase centers obtained
at these angles at C band.

Leaving apart these complicated methods which attempt the solution of inverse prob-
lems with some output parameters, there have been many examples in the literature of inver-
sion algorithms specifically devoted to the extraction of a single parameter of interest. The
particular case of the retrieval of vegetation height and biomass is historically reviewed in
the next paragraphs. These parameters have been chosen because they are very correlated
in general. They also exhibit clear relationships with other parameters of interest (such as
timber volume, bassal area, etc.). A lot of effort has been devoted to their retrieval in the
scientific community since the early 1990s. Biomass is related to the height of the trees or
plants by means of allometric equations and growth models. Another important application
of the vegetation height estimation is the remote monitoring of crops at large scale, such as
rice and corn, that are fundamental for the world economy and food resources.

In the case of short agricultural vegetation, some promising results have been ob-
tained by only using the backscattering coefficieny) (at a single frequency band. For
example, ERS-1 C band SAR data were successfully useti) 110 for monitoring the
growth of rice crops, where a simple model was used for relating the growth stage of
the crops. Other more sophisticated forward models have been developed to consider some
additional features that are important in these vegetation layers, like the coherent scattering
effects due to the row structure in agricultural fields and the non-randomness of the stems
arrangement]02, 111].
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When dealing with forest canopies, there are new aspects that must be addressed.
For example it has been shown i1f]-[119 that the radar backscatter intensity increase
approximately regularly with increasing biomass until it saturates at a biomass level that
depends on the radar frequency. At low frequencies the penetration into the vegetation is high
and, as a result, the sensitivity to biomass changes presents a high dynamic range without
saturation. In fact, recent results at VHF have provided better results than those achieved
with a conventional SAR at microwave frequenci@éd . It has been also observed that
cross-polarized backscatter intensities give better sensitivities than the co-polarized ones.

The common point of all those studies is that the inversion procedure is performed by
usingoy as input. As explained inlfL7], this parameter has an essential drawback: at short
wavelengths the penetration is limited and therefore the inversion techniques lose sensitivity,
and at long wavelengths the penetration is high but there are three main aspects that make it
ambiguous: 1) the sensitivity of, depends on the relative level of the ground backscatter
compared to the canopy backscatter, 2) the size of the branches is comparable to the wave-
length and the consequent interactions (and possible resonances) make the relation between
biomass and, non-regular, and 3) there is interaction between the canopy scatterers and the
ground, thus producing a final signal too complex to be analyzed by only employing simple
relations.

As is already clear at this point, the interaction of electromagnetic fields with vege-
tation targets is a complex process. As a result, any inverse algorithm for estimating one,
or more, physical parameters should be provided with many independent and meaningful
inputs. To achieve this, frequency and/or polarization diversity and interferometry are usu-
ally employed. The use of frequency diversity in this application is limited by the saturation
described above. On the other hand, if the frequencies are not very separated, frequency
diversity is equivalent to interferometry. For instance,liif] a theoretical study for the es-
timation of vegetation height makes use of the equivalence betwednr-eadar (frequency
diversity) and interferometry. This study is based on the properties of the frequency correla-
tion function [L19, which has also been successfully applied to the estimation of height of
grass layers in a controlled environmeh2().

Some approaches for retrieving biomass and canopy height based on SAR interfer-
ometry (INSAR) have been applied recently. The interferometric applications originate from
two observables that interferometry gives as outputs: coherence and interferometric effec-
tive phase center. It is known that the interferometric coherence decreases with increasing
volume scattering and with temporal change&3]]. Therefore, the coherence can be used to
identify zones covered by forests. It has been used2?,[123 for classification purposes
together with the backscatter intensity because the interferometric information is in most
cases independent of the intensity information. The interferometric coherence has also been
related to crop heights inLp4 by means of linear relations, which can be useful in moni-
toring applications. Moreover, the effective phase centers obtained by SAR interferometry
have been used irlP5 126 for inverting the height of forest canopies. In order to do that,
the interferometric information must be combined with a precise available DEM, or alterna-
tively two interferograms at different frequencies should be combined (for example at C and
P band, since the latter penetrates more the canopy). The main advantage of interferome-
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try is that the results depend mainly on the geometry of the target (i.e. on the morphology,
structural components and dimensions).

Another interesting example of a combination of interferometric information (phase
center and coherence) with backscattered power in order to invert characteristics of a layer
of vegetation and the underlying topography was presentedr.[ This paper makes
a thorough analysis of the sensitivity of the proposed observables on the parameters of the
scene and on the radar characteristics. Derivations are based on a simplified scattering model,
but it is enough to demonstrate the performance of this approach.

As outlined above, the first inversion methods based on INSAR estimated the canopy
height by comparing the interferometric phase centers in presence of vegetation with a pre-
viously known DEM of the area. Thus, the inverted height depends on the availability of a
precise DEM of the area of interest. An efficient way to circumvent this problem is the use
of polarimetry. Polarimetry enables the generation of simultaneous intereferograms of the
same scene by selecting various scattering mechanisms. If those scattering mechanisms are
associated with different layers that constitute the vegetation volume, the relative height dif-
ference between them should be closely related to the height of the plants. A more detailed
justification of this approach and the first examples appeared in the literature are described
in Chapter6. At the time this part of the thesis was originally written, the first results of this
technique that had been successfully compared with ground truth data were those presented
in this thesis.

2.5 SAR Imaging Algorithms

The practical problem motivating this part of the thesis is the formation of near-field 3-D

ISAR images of vegetation samples in the EMSL. The final objective, as explained in the In-
troduction, is to identify the scattering centers within the sample volume and to quantify their
polarimetric contribution by means of decomposition techniques. Therefore, it is important
to develop an efficient 3-D ISAR algorithm adapted to the EMSL measurement set-up.

SAR is a well developed technique for producing high resolution imalg&d-[ 134.
There is a wide variety of imaging algorithms that have been used to reconstruct reflectivity
images of a scene by using SAR techniques. A 2-D reflectivity image can be formed by syn-
thesizing an 1-D aperture with a wide-band radar. Accordingly, a 3-D reflectivity image is
formed by synthesizing a 2-D aperture. As an example, typical geometries of the 2-D aper-
tures that can be synthesized in an anechoic chamber are planar, spherical and cylindrical.
More precisely, 3-D ISAR images can be obtained by coherently processing the backscat-
tered fields as a function of the frequency and two rotation angles about axes which are
mutually orthogonal.

When the radar is within the far-field zone of the target, the illuminating wavefront
can be considered to be plane and, hence, the processing reduces to an interpolation plus
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a 3-D inverse discrete Fourier transform (DFIB]]. However, if the radar is located in

the near-field region, the planar wavefront assumption is not longer valid, and the fast, and
straightforward, Fourier processing cannot be used in the image reconstruction. Unfortu-
nately, the latter is the situation at the EMSL. Near-field ISAR imaging of large objects by
a direct Fourier inversion yields images which are increasingly unfocused at points which
are more distant from the center of rotatidi®§], or even images with scattering points
misplaced from their true position.

Attending to the working principle of the existing radar imaging algorithms, a general
classification is the following1[29:

Polar Format Algorithm, PFA : This algorithm, also known aRange-Dopplerwas the
first one to be developed and originates from optical signal processing. It is based on
the polar nature of the frequency domain backscatter data, works with motion compen-
sation to a point and as such needs to be used under the far field condition, requires an
interpolation prior to the Fourier transform, and compensates only partially the range
curvature. Both the 2-D and 3-D versions of this algorithm are of easy implementation
and have been used extensively.

Range Migration Algorithm, RMA : This algorithm originates from seismic engineering
and Geophysics, and is known in its 2-D versionuas k algorithm [L32. It works
with motion compensation to a line, requires an one-dimensional (1-D) interpolation
(known as Stolt interpolatiori33) and compensates completely the curvature of the
wavefront. In the radar remote sensing domain it has only been used in its 2-D ver-
sion. This thesis presents the first attempt known to the author to formulate its 3-D
version using a 2-D planar synthetic aperture. The RMA was firstly introduced to fo-
cus 2-D SAR data acquired from a spaceborne platform in the strip map mode. Later
it was adapted to be used in the spotlight mot&]]-[ 136. Results showing that the
RMA can also focus 2-D SAR data acquired in an anechoic chamber using the strip
map mode are reported in37]. Both the 2-D and 3-D versions of the RMA basi-
cally require a 1-D interpolator and Fast Fourier Transform (FFT) codes. As a result,
their implementation on a massively parallel supercomputer becomes fairly straight-
forward [13§].

Chirp Scaling Algorithm, CSA : It has the unique characteristic of not requiring any in-
terpolation [L39. It works with motion compensation to a line and corrects approxi-
mately the range curvature. It is widely used to focus 2-D space- and air-borne SAR
data sets.

All three types of SAR imaging algorithms are quite efficient because their imple-
mentation is mostly based on FFT’s, thus speeding up the computation time. Nevertheless,
their applicability to near-field ISAR configurations is limited by the correction of the wave-
front curvature, that is accounted for in a exact manner only by the RMA. Consequently,
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selecting the RMA for approaching the construction of an efficient near-field 3-D ISAR al-
gorithm seems the best option

Examples of 2-D and 3-D ISAR algorithms that implement the near field correc-
tion are presented inLfid-[143. The principle of these algorithms is different from the
conventional algorithms cited so far. These algorithms are based on an 1-D azimuth con-
volution between a near-field focusing function and the frequency domain backscatter data,
which precisely accounts for the wavefront curvature and the free space propagation losses.
This azimuth convolution is efficiently implemented by using FFT’s techniques. However,
to get the complex radar reflectivity of a voxel in a 3-D image, two more integrations over
the frequency and the incidence angle in elevation are required. These integrations cannot
be implemented with FFT’s and therefore the algorithm becomes very demanding from the
computational viewpoint.

This thesis will present a 3-D version of the RMA algorithm. Firstly, the 2-D syn-
thetic aperture is assumed to be planar and within the near-field zone of the target. As an
input, the algorithm requires frequency domain backscatter data which can be acquired using
a stepped frequency radar. Thus, resolution in the vertical and horizontal cross-range direc-
tions are given by the dimensions of the synthetic aperture, whereas resolution in ground-
range is provided by the synthesized frequency bandwidth. The frequency domain data is
preferred because the RMA algorithm works in the frequency wavenumber domain. Note
that the focusing of time domain data sets acquired with a pulsed system would become
straightforward by simply applying a Fourier transform. Secondly, an extension of the al-
gorithm to cylindrical and spherical scanning geometries (the usual ones at EMSL) will be
formulated and implemented by means of spectral translations to reduce the problem to the
planar-aperture case.

Finally, note that the measurements are supposed to be fully controlled and therefore
factors such as irregular sample spacing, platform position errors and mitigation of RFI have
not been investigated.

2Note that the PFA cannot be used when the backscatter data are acquired on a planar aperture



CHAPTER3

Theory of Radar Polarimetry

HE purpose of this chapter is the definition of the basic concepts that will be used

throughout the thesis. All the definitions and formulae present in this chapter can be
found spread in many bibliographical references, so it seems necessary to group them here
to make the text self-contained. Furthermore, due to the use of different conventions in
the literature, there are sometimes confusions that can be avoided by clearly stating all the
definitions in the first part of the text.

This chapter is organized in three sections. SecBdnpresents the basic formu-
lation of electromagnetic problems and the polarization description of a wave. Then, the
matrix formulation of the polarization characteristics of a target is detailed in Segtipn
where all the conventionally used matrices are defined, and the relationships between them
are stated. Finally, the target decomposition theory is explained in S&8oms it was
justified in Chaptep, this section will be mainly devoted to the eigenvector decomposition
of the coherency matrix. All details of this decomposition are explained, since it is of prime
importance for understanding the rest of the thesis.

3.1 Wave Polarization

3.1.1 Maxwell’s Equations

The fundamental laws that govern all aspects of electromagnetism, including wave gener-
ation, propagation and interaction with matter, are Maxwell's equations. At any point in
time ¢ and positionr, which is a vector defined with respect a specified coordinate system,
Maxwell’'s equations establish the relations that the electric and magnetic h&lds) and
H(r,t), and the magnetic flux density and electric displacemB(t, ¢) andD(r, ), must
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satisfy:
V x B(r, t) = —aBg;’t) (3.1)
V x H(r,t) = J(r,t) + aDg;’t) (3.2)
V -D(r,t) = p(r,t) (3.3)
V-B(r,t) =0, (3.4)

wherelJ(r,t) andp(r,t) are the current and charge densities associated with free charges at
the point and time under consideration

Maxwell's equations are complemented by the law of conservation of charge

V.3 + 28 (3.5)
ot
and a set of constitutive relations with physical characteristics of the medium:
D(r,t) = {E(r, 1) (3.6)
B(r,t) = pH(r,?) 3.7
J(r,t) = oE(r,t) (3.8)

wheree’,  ando are the permittivity, permeability and conductivity of the medium, respec-
tively. A non dispersive medium has been assumed for simplicity.

In the following, we will assume an harmonic time dependence of the étfrfor
all fields. Then, for convenience, the electric field can be obtained at a specific time and at
specific point in space by means of the following expression:

E(r,t) =% (E(r)ej“’t) , (3.9)

whereE(r) is a function ofr only, and} denotes the real part of the complex argument. The
angular frequency has been denotedJbyhich relates to the frequency by= 27 f.

Substitution of the harmonic time dependence and the constitutive relations in Maxwell’'s
equations yields:

V x E(r,t) = —jwuH(r, t) (3.10)
V- E(r,t) = p(r,t)/€ (3.11)
V x H(r,t) = (0 + jwe )E(r, ) (3.12)
V-H(r,t) =0. (3.13)

It is often convenient to write3(12) in the form

V x H(r,t) = jwe,coE(r, ), (3.14)

The notation convention isbold lettersfor vectors (i.e.v) anduppercase letters between brackéis
matrices (i.e[M]).
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where
€ o

& =——j— = +j¢ (3.15)
€0 WE€Q

is the complex relative dielectric constant of the medidjrade” are real numbers), ard
Is the permittivity of free space.

3.1.2 Solution of the Wave Equation

In a source-free, isotropic, lossless homogeneous medium, Maxwell’s equations can be com-
bined to obtain thevave equationwhich dictates the form of the electric field:

V2E(r,t) + k*E(r,t) = 0 (3.16)

where
k=wy\/pe =w/c (3.17)

Is the wave number, andis the velocity of electromagnetic propagation.
A general solution that satisifie3.(6) is the following:
E(r) = E¢ 75" = E ¢ ohkr, (3.18)

which is a plane wave propagating in the directiorkofThe magnitude ok is the wave
numberk, so the direction of propagation is completely defined by the unit vécterk /.

The magnetic field is provided b (L0, and has a similar solution:

H(r) = He iFkr, (3.19)

with .
H=-kxE, (3.20)

n

wheren = \/u/€ is the intrinsic impedance of the medium.

At this stage, it is time to translate the solutions of the wave equation into words.
The physical meaning of3(18-3.20) is that the electric and magnetic fields, at a specified
time, at any point of the spaaeare two perpendicular vectods,andH, that lie on a plane
normal to the direction of propagation. This plane is caideghase plandf the direction of
propagation does not change in the space, and the amplitude of the fields does not attenuate
with the propagation, then this solution of the wave equation is nangdre wave and
represents a fundamental solution to Maxwell’s equations.

In practical situations, however, the antennas cannot create pure plane waves, and
also the scattering by objects is not a plane wave. In this case, the wave amplitude decreases
with the distance from the antenna, and id@phasesurfaces are spherical. Anyway, in the
far-field region, which is of interest for us in remote sensing, the radius of curvature of the
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isophase spheres is so large that on a local scale the isophase surfaces can be considered
plane for all practical purposes. Therefore, the wave is said todmharical TEM wave

because both electric and magnetic fields are transverse to the direction of propagation, as
in the plane wave case. The only difference with respect to a plane wave is the attenuation
with distance, but it is not related with the analysis of the wave polarization. Therefore, in

the following, the fields will correspond to those of a spherical TEM wave or a plane wave,
without distinction.

Note that, since both electric and magnetic field vectors are mutually orthogonal,
the description of the wave can be carried out by only looking at one of them. Hereafter,
only the electric field will be considered. Although the time variablead been omitted
in (3.18-3.19 for simplicity, it is important to note that the amplitude and orientation of
the electric vectoE depends on the time. Indeed, thelarizationof the wave is a concept
used for describing the shape and locus of the tip of the vé&tas a function of time, for
a specific point is space. This vector, as shown before, always lies on a plane orthogonal to
the direction of propagation.

3.1.3 Polarization Description

In order to describe the polarization of a wave, a coordinate system must be established.
In the following, a generic spherical coordinate system is described. It has been widely
used in remote sensing because the earth’s surface can be represented:-ay plane,

and the incident or scattered direction of a wave can be described by the spherical angles
0 and¢. A plane wave traveling in the directidn has an electric field vectdE that can

be characterized in terms of two orthogonal componemtsizontal polarizationE,h and
vertical polarizationE,v. It can be conveniently done by defining the coordinate system
(k,¥,h) in coincidence with the standard spherical coordinate sysiel ¢). This is
depicted in Fig3.1

Thus, the electric field is:

E(r) = (E@v + Ehﬁ> g—dkkr, (3.21)
where, according to Fig.1,
jo Zxk (3.22)
|z x K|
v=hxk (3.23)

These vectors can be also defined in terms of the spherical angles:
k =sinfcospX + sinfsingy + cos 0 2 (3.24)

h=—singX+cosgy (3.25)
Vv =cosfcos¢pX+ cosfsingpy — sinf z. (3.26)
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Fig. 3.1. Spherical coordinate system for a plane wave

3.1.3.1 Polarization Ellipse

Without loss of generality, let us suppose the propagation direktamd the position vector
r to be parallel as depicted in Fig§.1 As a result, the scalar produkt r simplifies tokr,
and the position of the wave is simply dictated by the scalar variable

If the coordinates on the isophase plane are defined in terms of the two orthogonal
vectorsv andh, then the loci of the vectdt on thev—h plané are:

~

E(r) = E,(r)¥ + Eu(r)h. (3.27)

For studying the polarization of the wave it is important to explicitly show the phase
dependence with the radial coordinate:

E,(r) = Aye k" = g, ef%v eI (3.28)
Ep(r) = Ape ™% = qpetfreikr, (3.29)
whereA, and A, are the amplitudes of,(r) and E},(r), respectively, which can be further

decomposed into modulug,(anda;) and phased, and¢,,). The instantaneous value of the
field is calculated as:

Ey(r,t) =R (E,(r)e™") = a, cos(wt — kr + ¢,) (3.30)
En(r,t) = R (En(r)e’") = aj, cos(wt — kr + ¢p,). (3.31)

2Note that the plane is denoteeth (not—v) following the criterion employed in the definition ¢fandh,
i.e. the coordinategk, v, h) form a right-handed system.
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Fig. 3.2. Polarization ellipse in the—h plane and geometrical parameters. The rotation corresponds
to a right-handed polarization

Let us consider the nature of the curve described by the end point of the electric vector
at a certain point in space. This curve is contained onteplane, and can be obtained by
eliminating the dependence @at — kr) [10, pp. 24-27], yielding:

(M)2 + (M)Q _ (2E“(7"’ D En(r, ”) cosAp—sin Ad (3.32)

Ay ap, QyQp,

wherein
A = ¢p — Gy (3.33)

The formula in 8.32) is the equation of an ellipse. The ellipse is inscribed into a
rectangle whose sides are parallel to the coordinate axes and whose lengihsaa@2a,,,
as shown in Fig3.2 The ellipse touches the sides at the poipts:,, +-a;, cos A¢) and
(£a, cos Ap, tay,).

In general, the axes of the ellipse are not inlhand+ directions. Let and# be a
new set of axes along the main axes of the ellipse, and ket the angle betweehand the
direction of the major axi§. Therefore, the components and £, are related tdv, and £},

by:

E¢ = B, cos + Ejsine (3.34)
E, = —E,siny + Ej, cos 1. (3.35)
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According to the length of the axesandb with a > b, a new equation of the ellipse

E¢ = acos(wt — kr + ¢p) (3.36)
E, = Fbsin(wt — kr + ¢y), (3.37)
where the sign ambiguity is explained below.

Starting from the former equations, some trigonometric and algebraic derivations
permit the solution of all the geometrical relations between the parameters shown3r2Fig.
(see [LO, pp. 24-27] for details). That ellipse corresponds to the most general case of polar-
ization, so every polarization state can be described by means of a set of a few geometrical
values. The most important concepts are summarized herg.df and the phase difference
A¢ are given, referred to an arbitrary set of axes, anddenotes an angle such that

tan o = %, 0<a< /2, (3.38)

then the principal semiaxesandb of the ellipse, therientation angle)) which the major
axis makes withy, and theellipticity angley which specifies the ratio of the ellipse axes, are
specified by the following formulae:

a®+ b =a’+a} (3.39)
tan 2¢) = tan 2a cos Ag, o<y < (3.40)
sin 2y = sin 2« sin A¢ (3.41)
tan x = +b/a, —m/4 < x < /4 (3.42)

The sign ofy distinguishes the two possible senses in which the end point of the
electric vector may describe the ellipse. It is a matter of definition whether a sense of rotation
of the electric vector is referred to aght-handedor left-handed In this thesis, the IEEE
definition has been employed, which states that a wave haghtthanded(left-handed
polarization if its electric field vector has a clockwise (counterclockwise) sense of rotation
when it is viewed along the axis of propagation. Note that the rotation must be viewed from
the “rear” of the wave in the direction of propagation. This last point is the reason why the
ellipse displayed in Fig3.2has been drawn from that point of view, i.e. the wave is traveling
into the page, so that the rotation is examined from an observation point looking into the
page and perpendicular to it (se€elf, pp. 154-168]). Some bibliographical references have
been found where, although the criterion coincides with that stated here, the figures used for
describing the polarization ellipse are drawn from the opposite sense, thus making it difficult
to understand the rotation criterior8g, pp. 7],[6, pp.- 9]). Finally, and as a result of the
defined criterion, note that the ellipticity angleis negative for right-handed polarization,
and positive for left-handed polarization.

3.1.3.2 Typical Polarization States

Attending to the defining parameters of the polarization ellipse, some important particular
cases of polarization states can be recognized. The first special type is the reduction of the
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ellipse to a straight line. It occurs when

AP = ¢p — ¢, = M, m=0,x1,+2, ... (3.43)
leading to
Eh ap,
— =(=1)"—. 3.44
5= (3.44)

In this case the field is said to presdimear polarization The ellipticity angley
is zero, and the orientation angle coincides withar whosetangent is given by (3.44).
In the v—h basis,i) = 0 corresponds twertical polarization andy = 7/2 to horizontal
polarization

Another special case is that of a wave wiincular polarization the ellipse then
degenerating to a circle. A necessary condition for this is that the circumscribed rectangle
becomes a square:

ay = ap = a. (3.45)

In addition, one of the components must be zero when the other has an extreme value;
thus:
Ap = ¢, — ¢, = mm /2, m = +1,43,45, ... (3.46)

When the wave has a right-handed circular polarization (Rki@)\¢ < 0, so that

Ad = —g+2m7r, m=0,41,42, ... (3.47)
E, = acos(wt — kr + ¢,) (3.48)
Ey, = acos(wt — kr + ¢, — 7/2) = asin(wt — kr + ¢,). (3.49)

Instead, for a left-handed circular polarization (LH&) A¢ > 0, so that

Ad = g Fomm,  m=0,41,42, ... (3.50)
E, = acos(wt — kr + ¢,) (3.51)
Ey = acos(wt — kr + ¢, + 7/2) = —asin(wt — kr + ¢,). (3.52)

The rest of cases, i.e. when # a; orsinA¢ # 0, correspond to a so-called
elliptical polarization

3.1.3.3 Stokes Vector

So far we have seen that the polarization state of a plane wave can be characterized by
two sets of three parametersi,{ a,, A¢), or alternatively ¢, x, a? + a3). A different
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representation of the polarization of plane waves, that has been widely used in optics and
radar, is the Stokes vectgr

I |Ey|® + | Enl?
Q| _ |IEf —|Ew?

8= 1u| = | 2wrE,Ep) (3.53)
Vv _9S(E,E})

where the asterisk denotes the complex conjugate operatiofly and S stand for the real
and imaginary part, respectively.

A patrticular characteristic of these parameters is that all are real and have the same
physical dimensions. The paramefeis proportional to the total intensity to the wavg,
Is the difference of the intensities in both polarizations, whilandV contain the phase
information.

Although the Stokes vector has four components, only three of them are independent,
because they must satigfy
I?=Q*+U?+ V2 (3.54)

The relationship between the Stokes parameters and the other sets of parameters is:

I a2 +aj 1
2 _ 2
g Q| _ a, — aj _ g |cos 2P cos 2y (3.55)
U 2a,ap, cos A¢ sin 2¢) cos 2
V 2a,ap, sin Ag sin 2y

The relationship in3.55 indicates that the state of polarization of a plane wave can
be geometrically represented by regardjng U, ) as the Cartesian coordinates of a point
P. In fact, there is an uniqgue mapping of every polarization staten the surface of a
sphere of radiug. The angle®y and2¢ define the latitude and longitude of the poit
and the sphere is usually called a Poigcsphere (Fig3.3). Attending to the ranges of the
different parameters, the upper hemisphere, correspondigg>to0, displays left-handed
polarizations, whereas the lower hemisphere, correspondingt, displays right-handed
polarizations. The north pole of the sphere represents left circular polarization, the south
pole represents right circular polarization, and all the linear polarizations are in the equatorial
plane.

There is another definition of the Stokes parameters, which has been widely used for
convenience in solving radiative transfer problems. This new definition is knomodsied
Stokes vectorand separates the intensities for vertical and horizontal polarization:

I, | E,|? S(I+Q) 5(1 4 cos 24 cos 2x)
AR | Ep |2 5T =@ |51 —cos2¢cos2y)
&n =\l = orE) | = | v | T sin2vcos2y (3.56)
Vv —23(ELES) Vv sin 2y

3The identity in 8.54) only holds for completely polarized waves. See Seclicfor explanation.
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Fig. 3.3. Poincaé sphere with Stokes parameters as Cartesian coordinates

Both vectors are related by

o= O O
_ oo O O

and

N [—=
N =

gn = g. (3.57)

O ONIFI-
o O

o= O O
_ o O O
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3.2 Polarization Scattering Matrices

So far we have seen how to characterize the polarization of a wave by means of the polariza-
tion ellipse, the Stokes vector, or other sets of parameters. When dealing with the scattering
produced by an object of interest, we will have to relate the polarization characteristics of
two waves: a wave generated by the radar for illuminating the target (incident field), and

a wave scattered by the target and then received by the radar receiving antenna (scattered
field). The polarization parameters of both waves can be arranged as a vector, thus enabling
the construction of matrices for formulating the relation between the polarizations of the in-
cident and scattered fields. As a result, the polarization behavior of the target is assigned to
a matrix. This section presents the different matrices that are commonly used for describing
the polarization characteristics of single targets.

3.2.1 Scattering Matrix
3.2.1.1 Definition

Let us consider an object illuminated by an electromagnetic plane wave with incident electric
field . ‘ N

E'=E¥V, + E} h;, (3.58)
wherein the phase factor has been suppressed for convenieaceh; have been arbitrarily
defined according to Secti¢hl.3 and the incident direction is denotedlgs

The incident wave excites currents in the object, which in turn reradiate a field. The
reradiated field is known as scattered field, and the object is denotedcasterer In the
far-field zone of the scatterer, the scattered wave is an outgoing spherical TEM wave, which
can be locally considered as a plane wave over the area occupied by the receiving antenna.
If a new coordinate systenfrs—ﬁs, is defined for describing the polarization of the scattered
wave along the directioR,, the transverse components of the scattered Réldre:

A~

E* = ¥, + E;h,. (3.59)

For the polarization description of the scatterer it will be useful to adopt the following
matrix notation for the electric fields ir3(58 and @3.59:

E' = Eg E* = Eg : (3.60)
h Eh

By using this matrix notation, the componentd®fandE* are related by a complex
2 x 2 matrix in the following manner:

Es eIk 1S, Sl [Ei
v| — v v v 61
= -5 s [E] @e
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or more succinctly,

e—]kr

E° =

[S|E, (3.62)

r

wherer is the distance between the scatterer and the antenné; iarile wave number of

the illuminating field. The-—! coefficient represents the attenuation between the scatterer
and the antenna, which is produced by the spherical nature of the wave. On the other hand,
the phase factor represents the delay due to the travel of the wave from the scatterer to the
antenna. Examples exist in the literature where different coefficients have been used in the
definition of [S]. The one used i3(62 has been chosen for simplicity.

The[S] matrix is called thescattering matriXsee Chapte? and bibliography therein).
The elements of the scattering matrix are known as the complex scattering amplitudes. Equa-
tion (3.62 also indicates how the scattering amplitudes may be measured. For example,
is the complex ratio of the electric field of the vertically polarized parts of the scattered wave
and the incident wave; thus to measi#g, a vertically polarized wave is transmitted, and
both amplitude and phase of the vertically polarized part of the scattered wave are measured.
The other elements of the scattering matrix can be measured in a similar manner by choosing
the appropriate combination of transmit and receive polarizations and measuring both ampli-
tude and phase of the desired component of the scattered field. Hence, this matrix provides
the scattered field by the scatterer in the far-field region in a given observation dirdcfjon (
as a response to a plane wave incident in the diredtionSo, the incidence and scatter-
ing directions must be specified. In addition, the definition of the polarization bades (
for both incident and scattered waves has to be provided. In order to do that, two classical
conventions are explained in the following.

3.2.1.2 Coordinate System Conventions

The scattering description of objects is usually represented in two major coordinate systems:
the forward scattering alignmen=SA) convention and theackward scattering alignment
(BSA) convention. All coordinate systems are defined in terms of a global coordinate system
centered inside the scatterer. They are defined in the following.

Forward Scattering Alignment (FSA) Convention The FSA convention is commonly
used in problems with bistatic geometries or with multiple scattering. The reason is that
the directions of the vertical and horizontal unit vectors are always defined with respect to
the direction of the wave propagation. Thus, this convention is also knowvaas co-
ordinates The coordinate systenk,h) coincides with the standard spherical coordinate
system £, 0, ¢), as illustrated in Fig3.4.
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Fig. 3.4. Forward scattering alignment (FSA) convention: coordinate system and scattering geometry

In terms of the elevatiofi and azimuthp angles, the unit vectors are:

k; = sin 6; cos ¢; X +sinb;sin ¢; ¥ — cos; z (3.63)
R 7 % k;

hy= 225 Ging, R+ cosdi § (3.64)
1z x ki

=h; x k; = — cos b, cos ¢; X — cos;sinp; y — sinb; z, (3.65)

for the incident field, and:

~

k, = sin#, cos ¢, X + sin b, sin ¢, § + cos b, z (3.66)

. 5 % k,

h, = ZXA = —sing,X + cos ¢,y (3.67)
1Z x kg

v, = h, x k, = cos 0, cos OsX + cosb,sin g,y — sinb, z, (3.68)

for the scattered field.

For forward scattering, the angles &e= 7 — 6, and¢, = ¢;, so all three unit
vectors coincide. In contrast, for backscattering the angleg,aret; and¢, = 7 + ¢; for
domgk —k,. Therefore#, = ¥; andh, = —h,.

Backward Scattering Alignment (BSA) Convention The BSA convention is more
commonly used in communications and radar because the unit vectors are defined with re-
spect to the antenna polarization. The antenna is equally characterized in transmission and
reception, so the unit vectors of the incident and the scattered wave, when defined according
to the BSA, are identical in the backscattering case. The BSA convention is also known as
antenna coordinates
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Fig. 3.5. Backward scattering alignment (BSA) convention: coordinate system and scattering geom-
etry

In terms of the elevation and azimuth angles (see ig.the unit vectors are:

A~

k; = sin#; cos ¢; X + sin 6, sin ¢; ¥ — cos 6; z (3.69)
Caxk

h;, = ZXA = —sing; X + cos¢; y (3.70)
¥; = hy x k; = — cos; cos ¢; X — cos0; sin ¢; § — sin 6; 2, (3.71)

for the incident field (which coincide with the FSA case), and:

ky, = —sinf, cos ¢, X — sinf,sin ¢, § — cos 6 z (3.72)

. axk

h, = 2x — = SingsX — cos sy (3.73)
1Z % k|

Ve = fls X IA<S = cos f; cos ¢, X + cos by sin o,y — sin b, Z, (3.74)

for the scattered field.

As outlined above, in the backscattering direction the two coordinate systems are
coincident: o A A

Relation Between Scattering Matrices Expressed in FSA and BSA Conventions
By comparing the expressions of the unit vectors for the FSA and BSA local coordinate
systems, the relations between the incident and scattered field vectors are:

E%SA = EiBSA (3-76)
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s I 0
FSA — {O _J BSA-* (3-77)

This means that the scattering matrices are different for those two conventions. The
relation between the scattering matrices obtained by using the FSA and the BSA conventions
Is easily derived by substitutin@ (76 and @3.77) in (3.62), yielding:

[Slrsa = B _OJ [S]Bsa (3.78)

The relation in 8.78 means that both matrices result in the same by simply changing
the sign of the second row.

In the practical case of backscattering, the general propergcadrocityfor electro-
magnetic fields leads to the following property:

Shv — T Ovh (379)

if the FSA convention is used, and
Slw = Pvh (380)

if the BSA convention is used. Therefore, in backscattering, the effect of the reciprocity
relation on the scattering matrix is that it becomes symmetric when the BSA convention
is used, and antisymmetric in the FSA case. Bi§.shows the coordinate systems of the
FSA and BSA conventions in the backscattering case. A possible parameterization of the
scattering matrices for a reciprocal target in both cases is:

[S]rsa = [_ab Z} ) sa = {Z Z] , (3.81)

whereine = —d.

It is usual to neglect the absolute phase coefficient, that appears before the scatter-
ing matrix, in radar measurements because the power received is independent of this. Note
that in a general bistatic or nonreciprocal case the number of independent parameters that
fully characterize a scattering matrix is seven (four amplitudes and three phases) if the abso-
lute phase term is ignored. On the other hand, when reciprocity holds and we examine the
monostatic case there are only five independent parameters in the scattering matrix.

3.2.1.3 Target Vector for Backscatter Problems

With the aim of extracting physical information from the polarization description of a scat-
terer, a new formalism can be developed. It consists of the construction of the so-called
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FSA Convention BSA Convention
Scatterer Scatterer

Fig. 3.6. Backscattering geometry with FSA and BSA conventions

target vectorof a scatterer, which is simply a vectorization of the scattering matrix. In math-
ematical form, it can be formally written as:

k= V([S]) = %Trace([S]\If), (3.82)

whereV/(+) is the vectorization operatdfrace(-) is the sum of the diagonal elements of the
argument, and’ is a set of2 x 2 complex basis matrices which are orthonormal under an
hermitian inner product§?]. The vectork has four entries which are complex numbers

There exist several basis sets that can be readily applied to this formulation. Two ex-
amples often used ar&:;, which corresponds to a straightforward ordering of the elements
of [S], and¥ p, which makes use of the Pauli spin matri¢es usually applied in quantum
mechanics. Their explicit expressions are:

O (NN I

Up: V2{o]}, i=0,1,2,3 (3.84)

and

wherein
= | =g &) =)o) m=]) T e

Note that the premultiplying factors appear from the requirement to keep the total
power scattered by the target invariant, naniBlyce([S][S]*7).

In this thesis, the Pauli basis will be used in most cases. This choice is founded on
two properties of the Pauli basis representation. In first place, any scattering matrix can be
decomposed in terms of the Pauli matrices as follows:

a+b c—jd

1= | 0 ] = alond bl + los + dlo) (3.86)

4Do not confuse the target vectkmwith the direction of propagation of the wave
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wherea, b, c andd are complex coefficients. This original decomposition can be verbally ex-
pressed as: TARGET = Iso-Surface + Iso-Dihedrdb+Iso-Dihedral + Iso-Crosspolarizer.

Therefore, the decomposition in terms of Pauli matrices has a substantial physical
meaning because each of them represents an important scattering mechanism in radar im-
agery. In second place, this decomposition has the additional advantage that the scattering
mechanisms are orthogonal. This means that their separation is possible even in the case of
second order statitics, where noise and depolarization effects can be introduced. These ideas
will be extended in next sections in the interpretation of the target decomposition based on
the coherency matrix (see Sectidrd).

Finally, the explicit formulation of the target vectors, in terms of the entriéspf
yields:

Sm, Sv’u + Shh
Svh 1 va - Shh
k; = kp=— 3.87
L Shv F \/5 Svh + Shv ( )
Shh 3 (Svh — Shu)

In the general case of backscattering and a reciprocal target, one of the entries of
the target vector is redundant, and new three-component vectors are usually defined. For
example:

va 1 va + Shh
k3L - \/§Svh k3P - E va - Shh . (388)
Shh ZSvh

3.2.2 Coherency and Covariance Matrices

With the vectorization explained in Secti@®R.1.3 it is possible to generate a matrix from

the outer product of a target vector and its conjugate transpose (adjoint vector). If the target
vector is defined using the Pauli matrices basis, the resulting matrix is calledhlesncy
matrix, [7']; whereas ifl';, is used, the new matrix is known as tbevariance matrix|[C].

Then, following this definition, these matrices are:

1) = kp - X7 = [1]7 (3.89)
O] = k; -, = [C)T (3.90)

Both matrices are related by the transformation:

[C] = [A][T][A] (3.91)
wherein
10 0 1
1 110 0 -1
[A]:ﬁ 01 1 o (3.92)
0 j —j 0
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These matrices share some interesting properties: both are hermitian positive semidef-
inite and have the same eigenvalues (because the transformat@anhas unitary simi-
larity). The eigenvectors df'] and[C] form orthonormal sets of vectors that can be used as
a suitable basis for the vectorization operation detailed previously.

For future use, it is useful at this point to present a parameterization of the coherency
matrix, that reads:

Ay+A C—jD H+jG T—3J
C+jD By+B E+jF K—jL
H-jG E—jF By—B M+ jN
I+j] K+jL M—jN A,—A

T] = (3.93)

The important case of backscattering from a reciprocal target is expressed in the fol-
lowing for the coherency matrix. Two cases are distinguished, depending on the polarization
convention. Note that the scattering matrices for both conventions are displaye8in (

In case of FSA, the target vector results:

a+d
1 la—d
kp = — , 3.94
r=51"0 (3.94)
27b
and the coherency matrix is:
Ag+A C—34D 0 I—jJ
_|C+jD By+B 0 K-—jL
[T]rsa = 0 o o0 o (3.95)
I+3J K+jL 0 Ayj—A

Since there are only 9 nonzero elements, a reddced coherency matrix can be
defined as:
Ag+A C—4D T—3J
[Ty]psa = |C+jD By+B K —jL|. (3.96)
I'+3J K+jL Ay—A

In contrast, when the BSA convention is used, the target vector is:

a-+te
1 la—e
kp—ﬁ TR (3.97)
0

and the coherency matrix yields:

Ay+A C—jD H+jG

C+jD By+B E+jF

H-jG E—-jF By,-B
0 0 0

0
T]psa = ol (3.98)
0
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Again, a reduced x 3 coherency matrix can be defined as:

Ag+A C—jD H+jG
[T3)psa = |C+jD By+B E+jF|. (3.99)
H—-jG E—jF By—B

As stated before, the parameterization3rb@ and successive equations will be use-
ful in next section for stating a relationship between the coherency and covariance matrices
and other important matrices. At this point, however, it is necessary to present an explicit
expression of7’] and[C] for the backscattering case, with reciprocity, and by means of the
BSA convention. This specific situation is in turn the most common in radar polarimetry
and, hence, will always be used in this thesis when dealing with target decomposition appli-
cations. By substituting the reduced target vectors defined.&8(into the definitions of
both coherency and covariance matrice89-3.90), the new simplified matrices are:

1 |va + Shh|2 (Sv'u + Shh)(svv - Shh)* Q(va + Shh)S:h,
[TS]BSA = 5 (Sm) - Shh)(svv + Shh)* |va - Shh|2 2(5’01) - Shh)S:h (3100)
QSi)h(Sm; + Shh)* 251)}L(S1)’U - Shh)* 4‘5’11}1,‘2
|va‘2 \/ﬁsvvsjh S’Uvs;:h
(C3lpsa = [V2SunSt,  2Swn?  V2SunSi | » (3.101)
SunSt, V2SS, |Shnl?
and are related by the following matrix products:
1 T 1 T
[Cs]Bsa = 5 [As]" [T5]psa [As] [T5]psa = 3 [A3] [Cs]Bsa [As], (3.102)
where
1 0 1 1 1 0
[As]=[1 0 -1 Az =10 0 V2|. (3.103)
0 vV2 0 1 -1 0

3.2.3 Mueller and Kennaugh Matrices

In the previous sections we have seen that the scattering matrix characterizes a scatterer, from
the polarization point of view, by providing a relationship between the incident and scattered
field vectors. In an analogous way, a matrix could be defined for relating the Stokes vector of
the incident and scattered fields. This new matrix is knowiasller matrix and is defined

in the following.

The Mueller matrix,[M], relates the Stokes vector of the incident and the scattered
field, i.e.:

g* = —[M]g". (3.104)
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Scatterer

Fig. 3.7. Backscattering geometry with the BSA convention and matching transformation

The Mueller matrix is a4 x 4 real matrix, that can be expressed in terms of the
elements of the coherency matrix according to the parameterizati@©8.(For a general
case, the Mueller matrix has the form:

Ag+By C+N H+L F+1
| C-N A+B E+J G+K
M=\pg_-L E-J A4-B D+M|" (3.105)
I —

L
F K-G M-D Ay— By

If the backscatter case with reciprocity is examined, the resulting Mueller matrices
for both polarization conventions are:

Ay+By, C L I
| ¢ A+By J K
[Mlrsa= | 7 A-B, D (3.106)
1 K -D Ay— By
and
Ay+B, C H F
B C A +B E G
[M]psa = 7 E  A-B D (3.107)
—F -G -D Ay — By

At this stage it is important to point out a convention usually employed in the radar
community. It is known that, for optimal reception, the antenna must be matched to the
incoming wave. This is equivalent to saying that the incident field to the antenna (i.e. the
scattered vectoE?®) and the antenna polarization must be matched. The matching opti-
mization is formally achieved by conjugating the received scattered field. As a result, the
polarization ellipses of the antenna and the field are identical, but travel in opposite direc-
tions with respect to the antenna reference. This scheme is depicted t7#-ighere vector
12’3 — —k, denotes the new propagation direction accordingly. Of course, for that processing
to make sense, the BSA convention must be used when defining the polarizations. The final
consequence of this conjugation is that Hievector changes its handedness with respect to
the original BSA. Therefore, the ellipticity anglehas the opposite sign and, as a result, the
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last element of the Stokes vector of the scattered field changes its sign too. Finally, if this
criterion is accounted for ir(107), the sign of the last row of the Mueller matrix is changed.

Since this matching step is commonly used in radar polarimetry, the resulting matrix
(with opposite sign in the last row) must be differentiated to avoid confusion with the original
Mueller matrix, as it was encouraged it45. The new matrix is therefore usually known
as theKennaugh matrixk’], and in the backscattering case with reciprocity yields:

Ao+ By, C H F
B C A+B E G
K= g E  A-B D (3.108)
F G D By — A

Thus, the Kennaugh matrix is symmetric under the BSA convention, whereas the
Mueller matrices (both under FSA and BSA conventions) are not symmetric.

As already explained, the Mueller matrix and the Kennaugh matrix do not differ so
much: only the elements of one row have opposite signs. This well-known similarity has
led to many researchers mistaking one matrix for the other. The key point to avoid any
confusion is the origin of their definition, since the two matrices correspond to two distinct
operations: the Mueller matrix relates the scattered field to the incident field by using the
Stokes formalism, whereas the Kennaugh matrix provides the received power, given the
receiving antenna polarization characteristics.

In this thesis, the use of Mueller and Kennaugh matrices will be very scarce because
the polarimetric information will usually be treated by means of the coherency matrix. How-
ever, it seemed important to clarify their definitions in order to ease a possible comparison
between results obtained with the coherency matrix and those from the Mueller or Kennaugh
matrices.

A last remark must be stated about both matrices. It is also possible to define a
relation between the Stokes vectors of the incident and scattered field by using the Kennaugh
matrix, in a similar way to§.104. The new relation is:

1

r2

gk = 5I[K]g, (3.109)

where the scattered Stokes vector is modified (as denoted by the subscript) with respect to
the original one, having reversed the sign of the fourth element.

3.3 Target Decomposition Theory

As explained in Sectior2.2, the central point of this thesis is the extraction of physical
information about the target by means of an analysis of the polarization matrices that describe
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the target. This analysis is known@sget decompositiofiTD) and is formally presented in
this Section.

Firstly, the matrices previously defined are extended to the the case of scattering
by natural random targets, which is the group where, among others, vegetation is included.
Then, the TD theory based on eigenvalue analysis of the coherency matrix is fully developed.

3.3.1 Scattering by Random Media. Partial Polarization

In Section3.2 the description of the polarization characteristics of a scatterer has been car-
ried out by using several matrices, and the relation between all these matrices has also been
shown. The common point of all the polarization descriptors (matrices) presented so far is
that all of them have been defined by considering the polarization of the wave to behave in
a deterministic manner, i.e. the wave is monochromatic,.and,, a, and A¢ are deter-
ministic or constant. Such a wave is said todmenpletely polarized However, although

the wave transmitted by a radar can be considered completely polarized in most cases, the
field scattered by any natural scatterer is seldom completely polarized when observed as a
function of time or spatial position. This “loss” of polarization is due to the randomness

of the illuminated scene, unavoidable noise, etc. The extreme case is that of a wave whose
polarization state changes in a totally random way, so that it is equally probable to find any
possible polarization state from a single observation. Such a wave is knampakrized

The common situation is between the two extremes, and the wave is saidptartizly
polarized

Historically, one of the most widely used polarization descriptors of a wave is based
on the Stokes vector. For radar scattering from a natural scene, the electric field components
are random variables, and averaging must be performed to express the polarimetric infor-
mation of the wave. In the case of the Stokes vector, the averaging is incoherent, since the
elements of such a vector are defined as intensities. The Stokes vector of a partially polarized
wave is defined as:

& =1 OREED)) | = | (2avan cosAd) | (3.110)
]| —eSEEY) | | RansinAg)

(N ==> 1 (3.111)

whereinl, is the total intensity measured in théh individual measurement.

For an unpolarized wavéq?) = (a?) andE, and E, are uncorrelated, thus leading
to an averaged Stokes vector with only one nonzero elemgsiice) = U = V = 0. For
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a partially polarized case, the equality ;%4 becomes:
I’>Q*+U*+ V2, (3.112)

and thedegree of polarizatiof a wave is defined as:

Polari \/ﬁ
o olarized power /Q*+U?+V 0<m< 1. (3.113)

Total power I ’

In the same way as the polarization of a wave can be described with the average
Stokes vector, the polarization characteristics of a scatterer can be represented by an average
matrix. The averaging can be performed in two alternative ways: coherently and incoher-
ently. Coherent averaging is suitable to be applied, by definition, to the scattering matrix,
whereas the incoherent averaging is appropriate for the other matrix descriptors defined in
last section (Mueller, Kennaugh, coherency and covariance matrices). The average matrices
can be computed by averaging every element of them. So the definition of the average matri-
ces is the same as previous section but adding the average opératibeach element. To
avoid confusion, it is usual to denote the averaged matriX/d$ instead of( 7] as before.

Note that, after averaging, the relationship between the incoherently averaged ma-
trices ([M]), ([K]), ([T]), ([C])) and a single scattering matrj%] is no longer an unique
correspondence, except in the trivial case of the averaging of proportional scattering ma-
trices. The necessary conditions for that unique correspondence have been formulated in
several ways (see for examplelfd), but the simpler one was presented4], where only
the rank of the coherency matrix must be examined. An incoherently averaged matrix (of
any kind of those defined before) has such an equivalent nmatrionly if the matrix ([77)
has rank equal to one. This loss of equivalence increases the number of independent pa-
rameters that are necessary to fully characterize the polarization information. The averaged
matrices are represented by sixteen independent values in the bistatic case and nine inde-
pendent parameters in the monostatic reciprocal situation. This can be easily checked in the
parameterization presented in last section.

Whether to use incoherent or coherent averaging, what kind of matrix is better to
be analyzed, and what type of analysis or decomposition to perform are subjects that have
attracted a lot of attention over the last decades in radar polarimetry. Following the final
objective of TD theories, i.e. to decompose or express such an average matrix into a sum
of matrices representing independent elements with associated physical mechanisms, there
have been different approaches in the literature. All of them have already been reviewed
and compared in Chapt@r It was concluded that the coherent decompositions based on the
scattering matrix suffer problems with coherent speckle noise, basis invariance and lack of
basis orthogonality. On the other hand, the so-called Huynen type decompositions attempt
the extraction of a single scattering matrix from an incoherently averaged matrix, and the
remainder is assigned to a distributed target or a “noise” contribution, but this separation
into single scattering plus noise is not appropriate for many natural targets. Finally, in con-
trast, the goal of the eigenvector-based TD analyses is to represent the averaged data as a
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summation of single scattering mechanisms, and this separation is well founded in the un-
derlying mathematical properties of any eigenvalue approach: 1) the eigenvalue problem is
basis invariant, and 2) the solution of the problem leads to a diagonalization of the coherency
matrix, thus yielding statistical independence between the set of scattering processes.

In summary, the TD approach based on the eigenvector decomposition of the co-
herency matrix has been extensively used throughout this thesis. It has been chosen as the
basic tool for the analysis of polarimetric data from vegetation and for the construction of
inverse algorithms for retrieval of physical parameters. The next section is devoted to an
explanation of all the details of this approach.

3.3.2 Eigenvector Decomposition of the Coherency Matrix

Let us assume that we have a measured coherency matrix, obtained after an ensemble aver-
aging,([T]), and defined according t8.89 and @3.100, from a scene with reciprocity and
in the backscatter direction:

([T]) = (ksp - K3p). (3.114)

Then, the eigenvector-based decomposition states that the coherency matrix can be
written in the form:

([T) = [Us][Z][Us] (3.115)
where
A 0 0
X]=10 X O (3.116)
0 0 X

is a3 x 3 diagonal matrix with nonnegative real elements > \, > A3 > 0, which are the
eigenvalues of the coherency matrix; and

cos COS Qva cos arg
[Us] = [e1 ez e3] = [sina; cos 1679 sin ap cos F267%2  sin az cos Fze7% (3.117)
sin o sin 31€77 sin ap sin B2e772  sin g sin Byel 7

is a3 x 3 matrix whose columns are the eigenvectors of the coherency metrie; andes.
The parameterization of the matiiXs] will be explained in next section.

Equivalently, we can express the coherency matrix as a linear combination of the
outer products of the eigenvectors. The weights of this linear combination are the eigenval-
ues:

([T]) = ZA cie;l. (3.118)

By simply comparing §.118 with (3.114, it is evident that the eigenvectors are
physically equivalent to scattering mechanisms, since they are targets vectors which can be
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obtained from a vectorization of a scattering matrix. Therefore, the interpretatiGnla®(

is that the coherency matrix can be decomposed as a weighted sum of three scattering mech-
anisms. This decomposition has the intrinsic characteristics of every eigenvalue decomposi-
tion, namely:

1. The decomposition is basis invariant, i.e. the same result is obtained for any basis that
can be employed in the polarization definition.

2. The three scattering mechanisms are statistically independent.

3. The eigenvalues are the weights of the decomposition, so they indicate which scatter-
ing mechanisms are the dominant ones, and quantify in what proportion they dominate.

The expressions presented so far provide a general framework, since only reciprocity
was assumed. The next subsections are dedicated to show the particular form of the decom-
position when the scene exhibits symmetries, and to provide a physical interpretation of the
parameterization of the matrjk/s|.

3.3.2.1 Symmetries

Let us consider a medium that contains many identical particles or scatterers with different
orientations in space. If a certain assumption about the distribution of orientations is made, it
Is possible to find simplifications in the polarization scattering matrices. This would be also
the case if there are particles that can be regarded as mirror images of others also present in
the scene. Finally, an equivalent situation is that of particles exhibiting a plane of symmetry:
they are their own mirror images.

The idea of the analysis presented here is the following. If the scattering matrix of
a particle in a particular position and for a particular direction is known, then the scatter-
ing matrix of the same particle, or its mirror image, in certain symmetrical positions is also
known. This holds for the scattering matrix, but also for the rest of the matrices usually
employed in polarimetry, thus also for the coherency matrix. These ideas were firstly formu-
lated in [L1, pp. 46-59] for any arbitrary geometry by using the FSA convention. Here, the
results are rewritten for the BSA convention. Moreover, they are explained in more detail for
backscattering problems from reciprocal targets.

The general geometry of the scattering by an arbitrary particle is illustrated i.Bg.
where, for convenience and without loss of generality, the direction of incidence has been se-
lected as the negatiseaxis. The directions of incidence and scattering form a plane known
as thescattering planewhich in Fig. 3.8a coincides with thec—y plane. The line in the
backscattering plane that bisects the artgleetween the incident and the scattered direc-
tions is called thévisectrix Accordingly, the plane through the bisectrix and perpendicular
to the plane of scattering is known bsectrix plane There are three basic operations that
yield scattering matrices directly related to the original one:
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Fig. 3.8. General geometry of the scattering by an arbitrary particle (a), and particular case of
backscattering (b).

Position O Position 1 Position 2 Position 3
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X X X X
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Fig. 3.9. Four related positions of an arbitrary particle. 0: Original, 1: Rotdi&af about the
bisectrix, 2: Mirrored with respect to the plane of scattering, and 3: Mirrored with respect to the
bisectrix plane

1. Rotation of180° about the bisectrix.
2. Mirroring with respect to the plane of scattering.

3. Mirroring with respect to the bisectrix plane.

Any two of these three transformations, in succession, give the third one. In the case
of backscattering, the incidence and scattering directions are parallel, so the bisectrix coin-
cides with bothk; andk; (this direction is commonly known as tliee of sigh). As a resuilt,
the scattering plane and, consequently, the bisectrix plane become ill defined. However, by
looking at this case as the limit of the previous general arrangementfvhen, the scatter-
ing plane can still be identified as they plane, and the bisectrix plane should be the =
plane. This new set-up is depicted in Fgdb.

The four positions (original plus rotated and mirrored) of the particle are shown in
Fig. 3.9 for the backscattering case. The shape of the scatterer has been selected to clarify
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the following mirror and rotation operations. The scattering matrix of the original situation,
denoted as$S|, and the resulting scattering matrices for the other three configurations, all
according to the BSA convention, yield:

R A I O A IO R K B P R N CEEE)

The proof of the relationships to the original scattering matrix is not detailed here.
However, it is easy to see thgt;] comes from reciprocity relationships, whil,] is only
due to a change in one coordinate. Finglf] can be demonstrated as the successive appli-
cations of the two other transformations. Note that frédri{9 we see that there are only
two possible forms of the scattering matrix, both symmetric.

In the following, three assumptions will be done according to the distribution of par-
ticles among these positions. These assumptions lead to some important cases in remote
sensing of natural targets.

Reflection Symmetry The first case is that of a distributed target that has one plane of
symmetry containing the line of sight. This means that for every partitjeat one side

of the plane, there is a mirrored or image particig) (at the other side. This property is
namedreflection symmetrylf we construct the target vectors (based on Pauli matrices) of
both particles, they result in:

aq aq
kA = (a2 kA/ = (05} . (3120)
as —das

Then, after integration of the contributions of all the particles in the distributed tar-
get, we can compose the coherency matrix as the sum of the coherency matrix from both
symmetrical components:

T r X r x - r x 0
(7)) =(Ta)+{(T)a)=|z =z z|+ |2z =z —z|=|z = 0|, (3.121)
T xr x —x —x 0 0 x

wherein the symbatl denotes a general nonzero element of the coherency matrix.

The identity in 3.121) shows that if the scatterer has reflection symmetry about a
plane, then the coherency matrix will have this general form with only five nonzero elements.
The interpretation of the zero terms is that the crosspolar scattering is uncorrelated with the
copolar terms.

Since the coherency matrix shown i8.121) has a simpler form than that of the
general case, the particular expressions of the eigenvector decomposition for this specific
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case will be written here. It is easy to derive the new expression for the unitary riiafrix
in (3.117 [56, 45:

ed?cosa e¥sina 0

[Us] = |—ePsina e ?cosa 0], (3.122)
0 0 1
and substituting it ing.115 yields:
A1 cos? a + Ay sin® o cosasin a(Ay — Ap)e 70+
([T]) = |cosasina(Ay — Ay )e 70+ Ag cos? o + A; sin® 0. (3.123)
0 0 A3

Therefore, the coherency matrix of a target with reflection symmetry is fully charac-
terized by five parameters. Frol.{23 these five parameters ark;, A, A3, « and(d + ¢).
This fact was firstly stated inl4 7] by using the covariance matrix’].

Rotation Symmetry The second special case is that of a medium vathtion symmetry
i.e. the coherency matrix is invariant when the target (or alternatively the antenna) is rotated
about the line of sight. This condition is examined in the following.

Let [U£(6)] be an unitary matrix that allows the computation of the coherency matrix
when the target is rotated by an anglabout the line of sight. The matr{k’*(9)] is known
asrotation matrix and the expression for the rotated coherency matrix is:

([TO)]) = (U] ([T]) [UsH(0)] (3.124)
where
1 0 0 1 0 0
[U£(@0)] = |0 cos20 sin26 [UE@)] ™ = |0 cos20 —sin26|. (3.125)
0 —sin260 cos26 0 sin20 cos260

We have seen in previous sections that the coherency matrix is composed by the
ensemble averaging of outer products of target vectors. Since these target vectors will always
remain in a subspace of all possible target vectors, there will always be other targets vectors
k such that,

([ThHkny =0, (3.126)

so the vectork y define the null space of the coherency matdi¥|[ If the target is rotation-
ally invariant, then:
((T(0)kn =0, (3.127)

i.e. the null space should be unchanged under the transformati8rii@#). By substituting
(3.127 into (3.129, the requirement for invariance under rotations is equivalent to find the
eigenvectors of the rotation matrix:

([U5(0)] ™ = AlLs]) ky = 0, (3.128)

SThis parameterization will be further explained in the next section
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where[I3] is the3 x 3 identity matrix.

The solution of 8.128 yields three eigenvectors,

1 L L]0
kL = (0], k3 =— |1}, kK =—1|1]1, 3.129
N 0 N \/Ej N \/§ _j ( )

that are invariant under rotations about the line of sight. This fact implies that if the coherency
matrix of a scene is to be rotationally invariant, then it must be constructed from a linear
combination of the outer products of this eigenvectors, a3.ihlQ:

3 A1 0 0
(T =D NKEKR =10 (a+Xs)/2  j(ha—As)/2|. (3.130)
=1 0 —j(ha—Xs)/2 (Ao + As)/2

In this case, hence, there are also five nonzero coefficients in the coherency matrix,
but the coherency matrix is fully characterized by only using three parameters. This reduc-
tion in the number of independent factors, with respect to the reflection symmetry case, was
expected because the rotation symmetry is more restrictive.

Full Azimuthal Symmetry Finally, let us assume that the medium exhibits not only re-
flection symmetry about a special plane, but also rotation symmetry, that is to say, all planes
that contain the line of sight are valid as reflection planes. This property is dalleak-
imuthal symmetrylf a coherency matrix is expected to represent a target with such a sym-
metry, it must satisfy simultaneously the conditions of reflection and rotation symmetry.

Both conditions can be expressed as follows. We know that the target is rotation
invariant, so it has a coherency matrix like the one3ri80Q. At the same time, according
to the explanation of the reflection symmetry, the total coherency matrix is the sum of the
coherency matrices of the mirrored parts. Then, we can decompose the coherency matrix of
a target with full azimuthal symmetry as:

[\ 0 0 A 0 0
(IH=10  (A2+X)/2 J(Aa—=A3)/2] + [0 (Aa+A3)/2 —j(Xa—A3)/2
|0 —j(A2—A3)/2 (A2 + A3)/2 0 j(Aa—X3)/2  (Aa+ A3)/2
2\ 0 0
10 (utx) 0 | (3.131)
| 0 0 (A2 + A3)

Therefore, the resulting coherency matrix of a target with full azimuthal symmetry
Is a diagonal matrix, with only two different parameters. It is equivalent to saying that the
Pauli matrices are the eigenvectors, and that there are two equal eigenvalues.
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3.3.2.2 Parameterization of the Eigenvector Decomposition

Having formulated the eigenvector decomposition of the coherency matrix, the underlying
physical meaning of the resulting parameters is studied in this section from the point of view
of the extraction of information about the target.

Definitions We have previously demonstrated B 118 that an average coherency ma-

trix, obtained in a monostatic measurement with reciprocity from a natural random target,
can be expressed as a linear combination of the outer products of three eigenvectors. In other
words, this means that the coherency matrix can be decomposed into a sum of three inde-
pendent scattering mechanisms, since each eigenvector corresponds to a scattering matrix
and they are statistically independent from the properties of every eigenvalue decomposi-
tion (the coherency matrix becomes diagonal). The weights of the linear combination are,
not surprisingly, the eigenvalues, which yield the relative contribution of each component,
A= A=A 20,

These eigenvalues can be combined to form a single scalar quantity that is a measure
of the polarimetric disorder or randomness of the system. This scalar, firstly introduced
in [52, 57], is known asentropyand is defined for backscatter as:

3
H=— Zpi logs p;, (3.132)
i=1
where
A,
= . 3.133
RSPy (3.133)

are the probabilities of each eigenvalue (in the von Neumann sense), and the entropy is
defined in the range < H < 1. Note also tha} >, p; = 1.

At one extreme of3.132 we find the case of a nondepolarizing system and conse-
guently the coherency matrix has a single scattering matrix equivalent descriptor. For this
case[T]) has only one nonzero eigenvalue and the entropy is zero. At the other extreme we
find a perfect depolarizer witH = 1. This means that the target depolarizes all the incident
wave states, regardless of their polarization. For that case, we have degenerate eigenvalues
and, as a result, any basis set can be used to represent the system or target. Such cases rep-
resent complete polarimetric disorder. Their corresponding Mueller and coherency matrices
take the form:

(1)) =

000
000
00 0 (3.134)
00 0

o8 O
8 O O

(M) = |
0

o O 8

5Two or more eigenvalues are said to be degenerate when they are equal
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Both extremes represent somewhat ideal behaviors, so we can expect in practice sys-
tems to lie between them, thus being able to observe important information on the entropy
and eigenvectors about the target characteristics, correlations, etc.

Turning back to 8.117), we also adopted a parameterization of the eigenvector of the

form:
COS (¥

e = [sinacosBel | . (3.135)

sin o sin Be?Y

In (3.135 the absolute phase of the eigenvector has been canceled, so it is fully
characterized by four parametets:/3, 6 andy. This eigenvector is equivalent to a scattering
matrix (or scattering mechanism), with power normalized to one. In fact, we have seen that
any scattering matrix can be characterized by five parameters, so the missing one is the
power, which is proportional to the square root of the eigenvglde

Before going into the interpretation of the individual parameters, let us take a look at
the probabilistic interpretation of the scattering processes. We can model the target as a three
symbol Bernoulli process, i.e. the target is represented by {Rieeatrices, the eigenvectors
in (3.117, which occur with probabilitie;. In this way, for example, the parameteiis
associated with a random sequence like:

an) =ajaza g agazag ay ... (3.136)

and the best estimate of the parameter is given by the mean of this sequence. This mean is
evaluated as:

3
T= pioi = pion + pacia + p3a. (3.137)
=1

If this type of mean is extracted for all parameters we can establish a dominant mech-
anism or scattering matrix, namely

cosa
€ = |sinacosFel | , (3.138)

sin asin fel7

wherein

Q = p10q + P20y + P30 (3.139)
B = p1B1 + pafa + psfs (3.140)
8 = p161 + pads + p3ds (3.141)
¥ =1+ D2y2 + P3vs. (3.142)

The following step is the physical interpretation of the parameters used in the ex-
pression of the eigenvectors. In principdeand~y are phase terms without a straightforward
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interpretation, however we will see that the other two values have a clear physical meaning,
thus leading to a useful interpretation of the scattering mechanisms present in the target. It
is evident from 8.139 that botha and 5 can be considered as angles. All possible target
vectors can be mapped inta,(7) pairs (discarding the phase terms) by using the following
effective range of validity for both angles:

0<a<90° 0<8<180° (3.143)

A first inspection of thex dependence of the eigenvector entries yields some typical
features. For example, if = 0 the only nonzero element of the eigenvector is the first one,
s0S,, = Sy, andSy,, = 0. This is the common behavior of the scattering by a sphere, or a
surface normal to the incidence direction. If we go to the other extreme 90°, the only
zero element is the first, s9,, = —Sy,,. This negative correlation is typical of a dihedral or
an helix. Another important caseds= 45°, which corresponds to a dipole-like scattering,
since the scattered wave is always linearly polarized.

In order to clarify these ideas, and to include the effect oftlangle, it is useful to
decompose the eigenvector as the product of three matrices as:

1 0 0 1 0 0 cosae —sina 0] |1
e= 1|0 e 0] |0 cosp —sinfB| |sina cosa 0| |0], (3.144)
0 0 €| |0 sinB3 cospf 0 0 1 0

where the second and third matrices are typical rotation operators, and the first one only
accounts for the phases.

More generally, the followindPoint Target Reduction Theoreoan be established:
Any polarimetric backscattering mechanism obeying reciprocity can be reduced to the iden-
tity [1,0,0]7 by a series of three matrix transformations, as shows.it49. Note that, the
absolute phase has been included3ri43 for generality.

1 cosa  sina 0] |1 0 0 e 7 0 0
e=|0| = |[—sina cosa 0| |0 cosf sinf 0 e 0 |k (3.145)
0 0 0 1| |0 —sinfB cospf 0 0 e

As we have outlined above, althoughseems to be a rotation angle, it can be iden-
tified as the target scattering type. This interpretation is illustrated inFid) where the
terms “isotropic” and “anisotropic” refer to the amplitude differences between vertical and
horizontal polarizations (isotropic means that both are equal, while anisotropic means that
they are different). On the other hand, the angis a true rotation angle and gives the ori-
entation of the target which corresponds to the scattering mechanism describeBHdnthe
sake of completeness, Taliel shows the values of the four parameters for some canonical
targets with known scattering behavior, namely: sphere, dipole, dihedral and helix. For those
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Fig. 3.10. Schematic representation of the range ofdhgarameter
canonical scatterers whose orientation is not trivial, the afiggeproportional to the orien-
tation. For example, for a dipole or a dihedral that are positioned forming an éngté

respect tov, the angles is twice this angle;d = 26. Details about the scattering matrices
for many canonical targets can be consulted elsewlteggp] 69—-77],83, pp. 33-44].

Table 3.1. Examples of parameters values for canonical scatterers

a [ 9,7 5]
. . 10
Sphere 0° Arbitrary  Arbitrary a{o 1]

Dipole atd | 45° 20 0

1+ cos 3 sin 3
“ sin 3 1 —cosf

_ . B cosf sinf
Dihedral at? | 90 20 0=1 a [sinﬂ — oS 5]
_ . 5 ot ane 1 £5

Helix 90°  +45°  y—0=90 a [ij _1]

Roll-Invariant Parameters We have already seen that the coherency of a random target
can be decomposed by following an eigenanalysis, and that some parameters related to the
randomness of the process and the scattering mechanisms that are present in the scene can
be retrieved from the coherency matrix. An important question arises at this point: Are
these retrieved parameters dependent on the relative orientation of the antenna with respect
to the target? If this were the situation, the scattering mechanisms that we extract would
depend on that orientation, thus not being reliable. For example, think about a target whose
dominant scattering mechanism is dipole-like, but when it is rotated about the line of sight it
becomes a surface-like or a dihedral scattering mechanism. Evidently, this is an undesirable
situation, because we want to know what scattering mechanism is in the scene regardless of
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its particular orientation with respect to the radar.

In the following we will analyze which of the parameters obtained from the eigen-
vector decomposition are independent of the orientation of the target about the line of sight.
These parameters will be calledll-invariant. This analysis can be readily performed by
using again the unitary rotation matri&*(9)] presented in the symmetries study of Sec-
tion 3.3.2.1 In this way, the coherency matrix of a target rotated by afigleout the line of
sight is:

(T(0)]) = [URO)] (7)) [U£(0)] " (3.146)

If we substitute the eigenvalue decomposition of the original coherency nautikg
into (3.149, it yields:

(7)) = [Us" O] ([T1) [U*(0))7" = [U5"(O)][Us] (][]~ [U5*(0)) " (3.147)

We can define a new decomposition maffix(6)] = [U£(6)][Us] in order to write
the last equation as the typical eigenvector decomposition:

([T(0)]) = [Us()[Z][Us(6)] ", (3.148)
where, after some algebraic manipulations, the new matrix is:

cos o oS vy cos g
[Us(0)] = |sina; cos e/ sinay cos 34e?%  sin ag cos 34ei% | (3.149)

. . s~ . . s ) . . s
sin aq sin F1e’"  sin g sin F5e772 sin ag sin Fhe? 73

The inspection 0f3.149 and (3.149 gives the following conclusions. Firstly, the
eigenvalues are the same as before, so any parameter derived directly from them is roll-
invariant. For example, the entropy and probabilities previously defined, and other two pa-
rameters widely used, namelital powerandanisotropy The total power}V, is the trace
or sum of the eigenvalues, and represents the total power scattered by the target and collected
by an orthogonally polarized antenna pair. The anisotrdpys a second parameter defined
from the ratio between eigenvalues and complements the target entropy. So the expressions
of these two additional parameters are:

AN

W=\ + Xy + A A=
P Ao + A3

(3.150)

In second place, and very importantly, equatidri{9 says that the three scattering
mechanismsy; are the same as before the rotation. Hence, the dominant scattering mech-
anisma is also roll-invariant. This fact is of prime importance when we observe a scene
with a radar and want to retrieve the present scattering mechanisms, since we do not have
to take care about the orientation of the targets about the line of sight in order to know their
behavior.
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Symmetries In the previous definitions we have considered the general case of a random
target without any symmetry, so we need the three eigenvalues and eigenvectors for defin-
ing a “mean” or dominant scattering mechanism. However, when some of the symmetries
studied in SectioR®.3.2.1are present, the parameterization of the coherency matrix becomes
simpler.

For example, if the scene only exhibits reflection symmetry, the parameterization of
the coherency matrix is that shown iB.{23, with the eigenvectors formulated i6.022.
In this case there is no dependence on the orientation agrdjie to the reflection symmetry.
The three eigenvectors can be interpreted, by assuming zero phases for simplicity, as the
scattering mechanisms of a dihedrdl,(and S, with opposite signs), a surfacé,( and
Snr, With the same sign) and a target that always scatters a cross-polarized signal.

In addition, if a full rotation symmetry about the line of sight is examined, the re-
sult in (3.13]) states that the coherency matrix is already diagonal. Consequently, the Pauli
matrices are the corresponding eigenvectors. These Pauli matrices, at the same time, corre-
spond to the scattering matrices of a sphere, a dihedral and an helix. Furthermore, it is easy
to apply the Bernoulli averaging of the three scattering mechanisms for compytsigce
the «a angle of the first eigenvector is zero and the other two (which are the sag) i§
the coherency is rewritten fron3.(.31) as:

N0 0
(=10 X o], (3.151)
0 0 X
then A 2\ 2\
_ 1 2 2
. o, 2 g 2h 3.152
S Wi WL W Wil U W s (3.152)

This result will used later in this thesis for analyzing the behavior of a random cloud
of scattering particles.

Application: Classification on the H—a Plane Although the dominant target vector
presented in3.1389 has four parameters, we have seen in the above analysis that for natural
random media problems the main component for identifying the scattering behavior of the
target is the so-called dominant scattering mechanisitrhis angle has a useful rangegof

whose interpretation has already been presented, and is roll-invariant as previously demon-
strated. Moreover, if one wants to quantify not only the scattering mechanism, but also the
randomness of the scattering process, the target entfapyan appropriate parameter. Fol-
lowing these ideas, a classification scheme for polarimetric SAR was first postulatéd]in [

and later firmly described ir6p).

The classification procedure is based on the location of the pHirg) on a 2-D
plane. All random scattering mechanisms can be represented in this 2-D space. However,
the averaging inherent in this model implies that as the entropy increases the range of
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Fig. 3.11. H—« Plane for classification purposes

reduced. As a result, not all regions of tHe« plane are equally populated. Whéh= 1

there is only one possible value far which is60°. This reflects our increasing inability to
distinguish between scattering mechanisms as the underlying disorder or entropy increases.
On the other hand, & = 0, the full range of possibla values is accessible.

We can quantify the bounds for such a feasible regiof¥bfa) loci on the plane by
invoking symmetry arguments. When we do this, we find that for each value of entfopy
the parametef lies between two curves. The feasible region is shown inJIdL, where the
curves are identified as | and Il. Physically these curves represent bounds on the maximum
and minimum observable values as a function of entropy. These curves are determined
by the (H, @) variation for a coherency matrix with degenerate minor eigenvalues. Equa-
tions (3.153-3.154 give the canonical form of the coherency matrices for these bounding
curves, and3.155-3.158 their corresponding? anda values. Curve | represents the im-
portant case of full azimuthal symmetry already studiediigl), and the border of tha
values follows from a minimization aft with increasing entropy. The minimum value is
obtained by adding isotropic noise (the parameten [7'];) to the subspace orthogonal to
thea = 0 scattering mechanism. Curve Il follows from a maximizatiomaafith increasing
entropy. In this case two regions must be identified. The first is for low valuesvaien we
can fill up thea = 0 subspace with noise and,,, stays av0°. However, eventually (for
m > 0.5) this subspace is filled and the noise starts to spill into the whole space.



3.3 Target Decompaosition Theory

67

1 0 O
Tl;=10 m 0 0<m<l1
| 0 0 m
( 00 0
01 O 0<m<05
0 0 2m
T)ir =
2m—1 0 0
0 1 0 0.5<m«l1
k 0 01

-1 m2m
Hilm) = g, 1oss (W)
—1 m2m
Tram 1083 (W>

-1 (2m71)2m—1
Tram 1083 (W)

mm
alm) =150
2
O./[](m) = { .
14+2m

(3.153)

(3.154)

(3.155)

(3.156)

(3.157)

(3.158)

In this thesis, frequent use will be made of this plane to analyze many measurements.
It will be shown that every experimental result lies inside the feasible region. Moreover, the
inversion algorithm presented in Chapters also based on this plane. Finally, note that
Fig. 3.11also contains some dashed lines which correspond to the nine zones into which the
plane was decomposed i for classification purposes. They are included here only for

completeness.
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CHAPTER4

Polarimetric Decomposition
Techniques: Analysis of Indoor
Measurements of Vegetation

HIS chapter is devoted to the description of results that can be obtained by analyzing

the scattering from vegetation with the use of the target decomposition (TD) theory
explained in Chapte8. The same polarimetric analysis has been carried out for various
measurement configurations and signal domains in a complementary way. It will be shown
that all types of results provide important information about the morphology and physical
structure of the sample under study.

The chapter is organized as follows. Sectibh describes the characteristics of the
measurement system (the EMSL) and the vegetation samples that have been used throughout
this thesis. Then the TD method based on the eigenanalysis of the coherency matrix is
applied to measurements from those samples by following three different procedures.

The first, shown in SectioA.2, consists in the construction of the target vectors
with the values of the frequency domain backscatter data as a function of frequency, inci-
dence angle and polarization. As explained below, this is known as scatterometric mode.
After selecting a fixed elevation incidence angle, the ensemble averaging is computed with
all the azimuth angles and frequencies within the working band. As a result, a single co-
herency matrix is obtained andfa — & pair is derived for each elevation incidence angle
and frequency band. Obviously, with the frequency domain data, we can study the response
of the whole target as a function of incidence angle and frequency. However, we cannot
identify the elements of the sample originating the scattering mechanisms.

The next step is described in Sectiér8 and applies the proposed decomposition
scheme in the time domain. In this domain, though with some limitations, we can give an
indication of the origin and location of the scattering mechanisms previously estimated in
the frequency domain. The time domain decomposition scheme starts with the computation
of one-dimension reflectivity profiles along the slant range direction for each polarization
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and every elevation and azimuth angle. Then, for a fixed incidence angle, a targekvsctor
constructed at every range bin by employing the complex values of the images. With these
target vectors a position dependent coherency maffi} is computed by averaging over

the measured azimuth angles. Finally, the decomposition previously explained will provide
us an estimate for the parametersand H as a function of the position. Therefore, we

will be able to identify the dominant scattering mechanism associated with each position in
slant range, besides its randomness. Furthermore, since we can also obtain information of
the power reflected by the target as a function of the position, we will identify which parts
originate theH — @ values obtained in the frequency domain. As a result, the time domain
processing yields in most cases a vertical distribution of scattering characteristics which can
be identified with a multilayer structure. This morphology is usually employed in scattering
models for vegetation.

Finally, Sectiord.4 illustrates the application of this technique to 2-D and 3-D im-
ages of the vegetation samples. In this way, the polarimetric contribution of every part of
the target volume can be fully characterized. These results are important for understanding
how the global scattering from vegetation is formed by a superposition of many different
contributions, and how the TD theory can help to identify them.

4.1 Description of the Vegetation Samples and the EMSL

All measurements presented in this thesis have been performed at the anechoic chamber of
the European Microwave Signature Laboratory (EMSL), an unique indoor facility operating

at the Joint Research Centre of the European Commission in Ispra, Italy, since 1993. A
first technical description of the EMSL was presentedl#hd, and the initial experimental
results, together with many operational details, were reported latébiih 151]. The inter-

ested reader can find a considerable number of specifications in those references, but a brief
illustration about the EMSL is also reported in the following for the sake of completeness.

The experimental set-up for all measurements on vegetation is shown id.Eig.

and a photograph of the global arrangement of the chamber with a target inside is presented
in Fig. 4.2 The overall structure is formed by the conjunction of a hemispherical and a
cylindrical part, both with radius 10 m. In the gap between the two parts, a circular rail

is mounted on which two sleds carrying the antennas can move independently. The sleds
with the antennas cover a range-6t15° around the zenith. On the inner surface of the
hemisphere there exist about 80 fixing points for additional sensors. Currently, 37 of these
locations host fixed receiving antennas, integrated in the microwave measurement system.

The object under test is transported inside the chamber through a large door (5 m wide
and 8 m high) by means of a target positioner moving on a linear rail. This target support
allows precise linear and rotational positioning of the object inside the chamber before and
during the measurements. The linear movement can cover a span of 5 m, while the rotation
is possible in the full circular rang&q0°).
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Fig. 4.1. Measurement set-up of the experiments with vegetation samples

The measurement system is based on a network analyzer and operates in stepped-
frequency mode. The acquired data in frequency domain are empty room subtracted and
gated in the time domain to isolate the response of the target under test from the residual
antenna coupling and eventual spurious reflections in the chamber. Then, for monostatic
case, a single reference, fully polarimetric calibrati@s][is applied by using a metallic
sphere or a disc as reference object and a dihedral in two orientations as auxiliary target,
both placed at the focal point of the chambérhe calibration accuracy of the measurement
system is better than 0.5 dB in power &@idn phase at 0 dBsm. The sensitivity depends on
the number of measurements averaged for a single frequency point and on the time gate span.

A polarimetric calibration procedure for the most general bistatic configuration is not yet available. Several
partial solutions have been proposed but are still subject of ongoing research
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For example, with an averaging factor of 128, equivalent to an integration time of 0.025 s, and
a time gate span of 10 ns, a system noise floor ranging from -55 dBsm at 2 GHz to -40 dBsm
at 15 GHz has been measured. Note that the working frequency currently available at the
EMSL ranges from 300 MHz to 26 GHz, but the upper limit employed in the experiments
presented in the text is 10 GHz because it is enough to cover the main microwave bands used
so far in remote sensing from vegetation, i.e. L, S, C and X hand

Two different antenna systems were used in the experiments, both consisting of two
dual polarized horn antennas. A system with large antennas was used in the low frequency
range (0.3—4.3 GHz), while another with small antennas covered a wider range (1-10 GHz).
Both systems have a large beamwidth for illuminating the entire sample under test. The
distance between the antenna apertures and the focal point of the chamber is always 9.56 m.
The measured cross-pol isolation is better than 30 dB in the region occupied by the target.
The backscattered fields of the target are actually measured in a quasi-monostatic mode,
since the transmitting and receiving antennas are spaced Ebioutlevation.

The laboratory configuration has been designed to permit both monostatic and bistatic
measurements with almost any desirable combination of incidence and scattering angles.
In addition, the target under test can be moved perpendicularly to the line of sight of the
antenna or rotated around the vertical axis. This freedom in the scanning geometry is usually
employed for two general measurements configurations: scatterometric and imaging mode.
In the scatterometric mode the spatial resolution is determined by the antenna footprint. The
variation of the measurement parameters can be used either to characterize the response of
the whole object (e.g. the dependence of the radar cross section on frequency and incidence
angle), or to obtain independent samples for non-deterministic objects (e.g. azimuth rotation
of a rough surface or a vegetation sample). In fact, this thesis has made use of this mode with
both goals. In the latter case, the number of samples is fixed by the minimum angular step to
provide statistical independence between samples, which in turn depends on the target size
in terms of the wavelength.

In the imaging mode, angular and frequency diversity are used to reconstruct a re-
flectivity image or spatial distribution of the target scattering properties. The images can
be one-, two-, or three-dimensional, depending on the number of parameters that have been
combined. For example, the inverse SAR (ISAR) configuration allows the generation of 2-D
images by rotating the object in azimuth and using a non-zero frequency bandwidth, and
3-D images can be formed by adding a scan of the elevation incidence angle. If the target
is displaced with the linear positioner, images can be formed with the well-kstvprmap
SAR mode [ 29. Note that for producing radar images, the step in the scanning (along angle
rotation, linear displacement and frequency sweep) must be small, and normally the range in
the azimuth rotation is not complete (usually’ to 20°). Therefore, if data obtained from
imaging mode measurements are used to provide independent samples for non-deterministic
objects, as proceeding from scatterometric mode measurements, the number of independent
samples by rotating in azimuth is low for that purpose. So, if required, an additional fre-

2Some slightly different conventions for the limits of each band have appeared in the literature. For clarity,
the convention used in this thesis is detailed in Tabhleon pagel80
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Fig. 4.3. Photographs of the maize samples

guency averaging must be applied to reduce the variability of the results.

In both modes, if a scan in elevation angle is performed with a small step, it is also
possible to apply interferometric techniques, as will be shown in Chépter
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Fig. 4.6. Photograph the sample of rice
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A physical description of the vegetation samples used in the present thesis is detailed
in the following (see photographs on Figs3-4.6):

Maize Three samples of maize at different growth stages:

Maize A Stand of 44 mature plants about 1.7 m high, uniformly planted in a square
container of side length 1 m. The plants show a vertical bare trunk with diameter
about 2 cm. They only bear leaves in the upper half of the stems. The leaves are
about 50-70 cm long and 5-7 cm wide, and are bent and randomly oriented.

Maize B Stand of 6<6 mature plants about 1.3 m high, uniformly planted in a square
container of side length 1 m. The structure of trunks and leaves is the same as
sample A.

Maize C Stand of 6<6 young plants about 1.8 m high, uniformly planted in a square
container of side length 2 m. The plants show a green vertical fresh trunk with
diameter about 4 cm. The stems carry wide leaves from a height of 40 cm up to
the top. The leaves are about 30—40 cm long and 7—8 cm wide, and are oriented
at aroundt5° with respect to the trunk.

Cluster of small fir trees Stand of 9 small fir trees about 1.8 m high, regularly planted in a
round container with diameter 2.4 m. The trees are very close together. The structure
of each tree is cone-shaped, with no branches in the upper 20 cm. The branches bear 2—
3 cm needles showing a brush-like distribution. After one year, three trees occupying
the center of the target died because of the excessive proximity among trees. Some
measurements were also performed on this target which is hereafter dattexbed
in contrast to thdealthyoriginal situation.

Fir tree A balsam fir tree about 5 m high and 2.5 m wide, which was about 21 years old.
The tree presents quasi-horizontal branches bearing 2—3 cm needles in a brush-like
distribution, with branches constituting large horizontal planar surfaces at different
levels in height. The top of the tree conforms to a young tree of its same species.

Ficus Aficustree about 2.5 m high and 1 m wide. This tree exhibits 10 to 25 cm long pointed
leaves and many-twigged slender branches. The leaves can be viewed as folded ellip-
tical discs.

Rice Stand of %9 rice plants of about 0.6 m high, uniformly distributed in a square con-
tainer with side length 1 m. Each plant presents a cluster of green stems or long leaves
that originates directly from the ground. In the upper half of the sample, these stems
are notably bent and oriented in a random fashion. The leaves are about 2 cm wide.
The soil was flooded to replicate the natural conditions of rice crops.

An illumination level (about 1000 lux) sufficient for maintaining plants in normal
physiological conditions is guaranteed by some lamps mounted in the chamber. The illumi-
nation level can be modulated (e.g. to simulate the night-day transitions) by switching the
lamps on or off. The air inside the chamber can be exchanged depending on the requested
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environmental conditions. Moreover, in order to have stable measurement conditions, prior
to and during the experiments the plants are watered regularly.

Note that not all experiment configurations were repeated for all samples. Therefore,
the characteristics and measurement parameters of each particular experiment will be stated
in the text.

4.2 Frequency Domain Results

In this part of the analysis we are interested mainly in the dependence of the scattering
behavior of the vegetation samples on two important measurement parameters: frequency
and incidence angle. If we consider the trees or plants as heterogeneous clouds of anisotropic
scattering particles then, as the wavelength changes, we should become sensitive to different
shaped structures within the cloud. Moreover, when the measurement geometry changes
the radar backscatter from different parts can dominate or become negligible in the total
volume response. To investigate this, the coherency matrix has been calculated as a function
of frequency and elevation angle by averaging over all azimuth angles. Then, the target
entropyH and mean scattering mechanianhave been plotted in pairs on thhe— « plane.

These loci illustrate the scattering behavior of the whole target and also the influence of
the measurement frequency and incidence angle. This procedure is not shown in this thesis
applied to all vegetation samples, for the sake of economy. Nevertheless, a complete set
of measurements and a deep discussion of the results are described in the following, thus
demonstrating the potential of this analysis tool.

The first results were computed for frequency spans of 1 GHz centered at L, S, C and
X bands: 0.5-1.5, 2.4-3.4, 4.5-5.5 and 7.8-8.8 GHz respectively. The elevation incidence
angles ranged frorr (i.e., from the top of the sample) &° with a step ofl 0°.

To begin with, Fig.4.7 shows the frequency domain results for the three samples of
maize at S, C and X band. ThHé — @ pairs are positioned on the plane, where we have
also displayed the border of the feasible region (dashed line) and the zones (solid line) used
in the classification scheme presentedd#]] As shown in the photographs of Fig.3, the
three samples have different structures besides their density and height. These morphological
differences are successfully resolved by plotting the loci resulting from the decomposition
scheme on thé/ — o plane. Two common trends can be observed at all three frequency
bands: 1) the loci cover a wide range along the border of the feasible region, 2) they present
a clear dependence upon the incidence angle. As the angle increases, the dominant scattering
mechanism goes from surface ¢lose t00°) to dipole like ¢ close to45°), and the entropy
reaches its maximum for every. At this stage of the analysis, this fact can be justified
as follows: from steep angles the ground is more visible, thus the scattering mechanism
should be more surface like; on the other hand, as the incidence angle becomes more gentle,
the radar sees the maize sample as a distribution of vertical cylinders which must show a
scattering mechanism closer to dipole like. Note that, for all vegetation samples, the same
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Fig. 4.7. H — @ as a function of incidence angle at S, C and X band for the three maize samples.

Incidence angles §° — 60°

general trend with the incidence angle has been observed: the loci go roughly from the
bottom-left corner towards the top-right corner on the- « plane. Since there are not cases
with swapped positions, the only loci to be labeled are the first (O deg) and the last (60 deg).
The reader can easily follow this path and identify the loci for every angle by simply counting

from the first to the last.

With regard to the contribution of polarimetry, the maize targets, when considered
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as a whole, are so random that the information provided by polarimetry is limited. In fact,
when the loci lie along the lower curve of the feasible region, the measurements can be fully
characterized by two parameters: total powar{ A\, + A\3) and depolarizatiom. As was
explained in ChapteB, the points of the lower curve of the feasible region correspond to a
coherency matrix with the form:

1 0 O

(T)=10 m 0 (4.1)

0 0 m
wherem fixes the location on th& — « plane. It also means that the polarimetric parameters
can be obtained by using on{S;..|) and{|Six|) = (| Sus])-
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Fig. 4.8. Total power §_ \) vs m as a function of incidence angle at C and X band for the three
maize samples. Incidence angle8®= 60°

We have plotted the curves §f A vsm as a function of the incidence angle for the
three maize samples at C and X band in EFi@ At S band the loci actually lie off the
lower banding and therefore they are not shown here. From the curves at C and X band,
it is evident that sample C can be easily separated from the others by looking at the total
power at any incidence angle. With respect to samples A and B, it is possible to distinguish
them at a single incidence angle, but the global trend is quite similar. Note that the samples
with mature plants (A and B) could be modeled as a two-layer structure above the ground: a
top layer with a random distribution of wide long bent leaves, and a bottom layer with thin
trunks without leaves. In contrast, the young plants of sample C have wider green trunks
with an almost regular distribution of wide leaves (not bent) from the bottom to the top of
the plant, thus matching better a model with a single layer. In&igthe loci of the samples
for a fixed incidence angle change significantly as the frequency increases from S to X band.
At higher frequencies, the penetration depth is more limited and the backscatter associated
with the top layer of the plant should be the dominating scattering mechanism. In the next
section, this is further supported by the decomposition results in the time domain.

Fig. 4.9displays the loci on thél — « plane for the group of small fir trees at the four
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Fig. 4.10. H —a at S, C and X band for the group of small fir trees in two states: healthy (left) and
damaged (right). Incidence angles@ — 50°

frequency bands. As before, an evident dependence on the measurement geometry can be

observed. For angles gentler thz(? the loci remain in a narrow region with high entropy
anda@ close to45°. This is evidence that the green needles of the trees, which are the main
scattering centers, show a dipole like response. However, for lower angles the loci separate
from this area showing a wide spread. This may be due to the presence of the ground,
which is more visible from steep angles. It is also important to note the difference between
the sample with fir trees and the maize samples, which demonstrates the sensitivity of this

method to changes in the morphology of the target.

As was outlined above, the sample with a cluster of small fir trees suffered damage
due to the proximity between trees, and three of them died.4Fl@.presents a comparison
at S, C and X band of th# — @ loci for both states (healthy and damaged) in measurements
performed for incidence angles fra#i° to 50°. Although at low frequencies the loci occupy
similar positions on the plane, when it increases they go to lewand H values in the
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Fig. 4.11. Depolarization vs frequency for the group of small fir trees in two states: healthy and
damaged. Incidence angler8°

damaged case. This change in the scattering behavior is due to the death of some trees. The
dead trees become dry, so the green needles that were the main scattering centers at high
frequency in the healthy state do not scatter any more. As a result, the scattering response
is only equivalent at low frequency, because in that case the main scatterers are still the
branches and trunks.

This phenomenon has been studied in more detail by plotting the depolarization fac-
tor m as a function of frequency for both samples in FglLl This figure illustrates the
previous comments. The change in the trend of the depolarization is evident when frequency
increases. For the healthy sample the green needles become more and more important as
main scatterers, thus producing a high depolarization. On the other hand, the lack of green
needles in three of the nine trees has the opposite effect. This trend would be even more
evident if all the trees had died.

Fig. 4.12shows a comparison between the group of small fir trees and the single fir
tree from another measurement that was carried out within the angularttargi®° — 51°
at S and C band. The fir tree also presents loci close ta thel5° region, corresponding to
the dipole like scattering from their leaves and branches. The spread for the group of trees
is smaller than that of the single fir tree. Moreover, in contrast to the big tree, the loci of the
group of trees at both bands fall in the same region. These differences may be due to the
differing tree architecture. The small trees present shorter branches and the trunk is thinner
than that of the big one. In addition, the top of the big tree conforms to a young tree. This
fact could explain the similar results at higher frequencies.

In order to highlight the discrimination capabilities of the representation aofithey
loci on a plane, a final result is shown in this section. It corresponds to two ISAR measure-
ments from the fir tree and the ficus. For consistency, the result corresponds to the frequency
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band and angular span that intersect the measurements from both2trees5 GHz and
39° —51°. The average coherency matrices were calculated firstly as a function of frequency
by averaging over all azimuth and elevation angles. Then, a second group of coherency
matrices was obtained as a function of the incidence elevation angle by averaging over all
azimuth angles and frequencies. Using {fi¥) matrices so computed we then calculated
the H — @ values. Figuret.13shows the results obtained, plotted as points onithe o

plane. The varying parameters (frequency and incidence angle, respectively) are represented

by the gray scale of the points, going from the black (lowest value) to the white (highest
value). It is obvious that the loci of thE — @ points are different for these trees. Moreover,
the trends as frequency increases are clearly opposite. Entropyiacictase with frequency
for the fir tree, while they decrease for the ficus. The result as a function of the incidence
angle could be employed in classification techniques, since the points corresponding to the
same tree are very close together but are well separated between tree types.
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4.3 Time Domain Results

The frequency domain results have shown that the dominant scattering mechanism is an
observable sensitive to the physical structure of the sample and, consequently, to biophys-
ical parameters such as height, leaf density and shape, and so on. In order to develop a
reliable inversion technique (like polarimetric interferometry for the retrieval of vegetation
height [69]), we need to study the origin of the estimated scattering mechanisms. Alterna-
tively to the frequency domain results which provide the response of the sample as a whole,
the same decomposition scheme has been applied in the time domain. The objective is to
identify the position (range bin) in which every scattering mechanism is located.

The time domain decomposition scheme starts with the computation of complex re-
flectivity profiles along the slant range direction for each polarization and every elevation and
azimuth angle. These profiles are obtained by applying a Fourier transform to the collected
data in the frequency range of interest, resulting in time domain signals. The time variable
is directly related with the slant range. Then, for a fixed incidence angle, a target vector
k is constructed at every range bin by employing the complex values of the images (called
[R] for clarity), instead of théS] entries, as in3.88. With these target vectors, a position
dependent coherency matri¥’]) is computed by averaging over the measured azimuth an-
gles. This averaging can be applied because the sample is always at the same range from
the antennas. Finally, the decomposition previously explained gives us an estimate of the
parameters (for instanca,and i) as a function of position. Therefore, we can identify the
dominant scattering mechanism associated with each position in slant range. Furthermore,
since we can also obtain information of the power reflected by the target as a function of
position, we can quantify the strength of the contribution of each part té/thea values
obtained in the frequency domain.

As we did in the frequency domain, we can observe the results as a function of in-
cidence angle and frequency band. Note that we only have resolution in the slant-range di-
rection, and therefore contributions in the cross-range direction are integrated at each range
bin. Here we are interested in justifying the frequency domain results and hence we will
use the same frequency ranges: bandwidths of 1 GHz centered at each frequency band. The
corresponding resolution in slant range is about 15 cm. Note also that no windowing has
been applied in the study.

In order to better illustrate the analysis, the following parameters have been plotted
as a function of-:

Probabilities of occurrence of each eigenvalpe:

Scattering mechanism of each eigenvector:

Mean scattering mechanisra:

Entropy: H



4.3 Time Domain Results 83

o Total reflectivity powet:

1
Power= 3 (|Rnn + Rool” + |Rin — Roo|” + 4| Rio|?)

) 1.0

08 4

0.6

0.4 p3 ! /\\
\

02 " by N B

0.0L_SNAw S o o 2T MY Nl N

-15 =10 =05 0.0 0.5 1.0 1.5

Probabilities

90.0
67.5

45.0

22.5

o 1,2,3 (degrees)

90.0
67.51 b

450 N

225 b

Average o (degrees)

-15 =10 =05 0.0 0.5 1.0 1.5

Entropy

-15 =10 =05 0.0 0.5 1.0 1.5

Relative Power (dB)

[ I
Noo— =
o o o u o
T
|

—-1.0 -0.5 0.0 0.5 1.0 1.5

r(m)

o

Fig. 4.14. Analysis parameters in time domain at X band for the maize sample A. Incidence an-
gle=0C

3The power has been normalized to its maximum value, because the absolute power is of no interest for
locating the origin or position of the estimated scattering mechanisms
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Fig. 4.14 presents the decomposition results for the maize sample A at X band and
vertical incidence (incidence angle equal to zero). The relative power plot shows clearly
the ground reflection peak (~ —0.5 m), revealing that there is high penetration even at
X band for this incidence. There is also an area of strong reflectivity within the window
0.1 < r < 0.8, that seems to originate from the wide leaves of the sample. On the other
hand, from the plots of the probabilities of occurrence of each eigenvalue, we see that the
area near the ground is dominated by a surface-like scattering mechandosé¢ to zero
with probability close to one), whereas in the top part of the sample no single scattering
mechanism is dominant (some double bounce reflectionsawilbse to90° are present). It
has been observed that by integratingveighted by its relative power over the entire time
domain, the resulting value is roughly that estimated from the frequency domain data. So,
the results in both domains seem to be consistent. This holds for all the samples considered
in this study.

In Fig. 4.7, we saw that the response from both samples of mature maize were almost
identical at S and C band for every incidence angle. However, at X band{ thev pairs
did not coincide at any incidence angle. The time domain results for sample B at X band
are shown in Fig4.15 Since the plants of sample B are smaller (about 1.3 m high instead
of 1.7 m), they have a shallower layer with leaves and, consequently, the high reflectivity
window associated with this layer is narrower. This is also the cause of the letvieved
for the whole sample in the frequency domain. In addition to the differing heights, the
second sample exhibits a higher density of plants. However, this does not seem to justify the
differences in Fig4.7 because the relative power at the leaf layer with respect to the ground
reflection is the same. We can conclude that the avefiagalue at X band is a function
of the plant heightor these two samplesnd, consequently, it might be used in the future
for inverting the height of maize crops. This is also the case for entropy, sincevtatd
entropy lie at the border of the feasible region on the- o plane. The fact that and H
depend on the height of the samples only at X band is due to the larger penetration at lower
microwave frequencies, for which the layer of leaves (that dictates the height of the plants) is
almost transparent, thus not changing the total response. In any case, the usefulness of these
parameters to construct an inversion algorithm has not been accurately analyzed yet in terms
of biophysical parameters.

Fig. 4.16depicts the parameters of the maize sample C at X band and incidence angle
equal to0°. The power reflected from the leaf layer, relative to the ground reflection, is much
lower than that of the mature samples because of the lower density and wider spread of leaves
along the entire trunk. This wider spread is also evident in the more uniform reflected power
from all the leaves present at the trurik< r < 1.4). The final average is lower than that
of the mature samples (i.e., A and B) although the plants are taller. This may be due to the
lower density of leaves in the top layer, that produces a scattering mechanism always close
to zero since there are less double bounce contributions (see the picture of the probabilities
of each eigenvalue). Therefore, the use of the finat entropy for estimating the heights of
maize plants is conditioned (among other aspects) by the growth state or age of the plants.

The following result has been computed for the maize sample A to study the depen-
dence on the incidence angle. Hgl7 presents the relative power and thelots for four
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Fig. 4.15. Analysis parameters in time domain at X band for the maize sample B. Incidence arfigle =0

incidence angledd°, 20°, 40° and60°, respectively. The reflected power is very sensitive to

the incidence angle. As expected, the peak that appears around(0.5 m for 0°, corre-
sponding to the ground reflection, becomes lower and lower as the incidence angle increases,
while the plots ofc become uniformly distributed. This phenomenon is due to the integra-
tion in the direction normal to the slant range. These results can be extrapolated to the other
mature maize sample (maize B).

Fig. 4.18shows the results for the maize sample C at X band for the same incidence
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Fig. 4.16. Analysis parameters in time domain at X band for the maize sample C. Incidence afigle=0

angles. We see that the averagés even more uniform than that of the mature samples,
because of its more homogeneous structure.

An additional comment can be stated according to Figk7 and4.18 It is known
that when a wave propagates through a random medium, if the medium has some kind of
orientation, then the effective propagation velocity for two different polarizations becomes
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different. The propagation matrix is expressed as,

edmz ) )
[p] = with 7,7, € C, (4.2)

O ej"/v 2!

wherez’ = z/cos 6 denotes a variable indicating the position into the layer (equivalent to
the slant range variable used in the time-domain plots), adv are supposed to be the
eigenstates. The real partspfand~, correspond to the phase change, and the imaginary
parts represent any attenuation along the path. If a wave propagates through such a medium
andS(y,) < S(v.), the extinction coefficients are different. Therefafeshould start a@°

at the top of the layer and should tend towatd% whether or not this value will be reached
depends upon the depth of the random layer. This fact matches the trancbiserved in
Figs.4.17and4.18mainly for incidences of0° and60°, wherea grows as the slant range
coordinate penetrates into the vegetation sample. We also can defiearadifferential
extinction coefficienty, /., that is directly related to the slope @fwith r, namelyda/dr.
Observing Figs4.17 and4.18 at incidence angles af0° and60°, it is evident that these
vegetation samples match this random medium model, being the average slopes of both
samples at these incidences about 17 degrees/m in sample A and 12 degrees/m in sample C.
It means that sample A has a higher differential extinction coefficient than sample C and,
hence, it must be accounted for in future applications of polarimetric interferometry for
locating the phase centers within the volume of these maize samples.
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Fig. 4.19shows the time domain results for the cluster of small fir trees with an inci-
dence angle of0° for all frequency bands. The structure of this target is quite homogeneous
and, consequently, its response is uniform as well. We see that there are no differences be-
tween the results at C and X band. We can clearly identify two parts in the power plot: one
peak corresponding to the ground reflection, and a second smooth plate that fits the volume
of the vegetation sample. At S band, the penetration is higher and therefore the relative
power associated with the vegetation volume becomes much lower. As a result, the global
entropy decreases drastically. This is even more evident at L band, where the penetration is
so strong that the ground reflection is dominant. This fact justifies that iMFgnly for
angles higher thaR0° the average at L band is similar to those in the other bands.

There is another interesting aspect to note here. One of the scattering models more
widely used for studying a canopy, due to its simplicity, is composed of one layer of ran-
dom patrticles over a half-space that corresponds to the ground. This is basically the model
presented inq9] for studying the properties of a technique for inverting the canopy height.
According to this model, the randomness of the scattering as a function of depth into the
vegetation should ideally be high at the canopy layer and low at the bottom of the canopy.
Since the entropy is a parameter directly related to the randomness in the scattering, it also
should be high at the canopy layer and low at the ground.4=i@presents this behavior of
entropy as a function of the slant range, being obvious at C and X band.
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In Fig. 4.20the loci of H — @ are plotted as a function of range for the group of
small fir trees at X band and incidence anglelof. The slant range variable goes from
r=—0.1mtor = 1.5 m. Itis evident that the distribution of loci matches the expectations.
Again, this fact is very important for the success of polarimetric interferometry.
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4.4 Imaging Results

By making use of the potential of the EMSL measurement system, some ISAR imaging
experiments have been carried out on vegetation samples. The final results of these exper-
iments are 2-D and 3-D complex reflectivity images with fine resolutions in all directions.
Consequently, the major scatterers and their position within the sample volume can be iden-
tified. Moreover, since the measurements are fully polarimetric, the images at different po-
larizations (HH, HV and VV) have been combined for applying the TD theories presented

in Chapter3. Therefore, this procedure accomplishes a step forward with respect to the 1-
D time domain results described in the previous section, because the identification of the
polarimetric characteristics of the target can be now performed along all directions.

The 3-D ISAR experimental set-up consists of the acquisition of the radar backscat-
ter from the target by using a large bandwidth, and introducing an azimuth rotation of the
target with small steps and a scanning in the elevation angle by changing the position of the
antennas. Once the data have been acquired following this procedure, a focusing algorithm
is applied to create the reflectivity images. In this thesis, results obtained with two accu-
rate algorithms will be shown. Both algorithms take into account the exact curvature of the
wavefront produced by the near-field configuration of the EMSL. The first algorithm was
presented in]43 and is based on an azimuth convolution between the data and a near-field
focusing function. The second method, based on range migration techniques, was devel-
oped as part of this thesis and is described in Chapt&ince the final images from both
methods are indistinguishable, and we are not interested in the computation efficiency at this
moment, it will not be specified which method was used for computing every image in this
section. The main parameters of the ISAR experiments, and the approximate resolutions in
all directions, are reported in Tabdel

In order to facilitate the interpretation of the results, the application of this analysis
technique is illustrated by performing the eigenvector-based TD on 2-D images correspond-
ing to slices through the complete 3-D images. The ensemble averaging of the coherency
matrix is applied in the spatial domain by using a moving window. In general, a window
with a low number of pixels is chosen for reducing the potential degradation in resolution.

The first example of this method is shown in Fig21 The target is the fir tree,
and its corresponding reflectivity images for all three polarizations were already published
in [96]. As was observed in that paper, the differences in polarization are more evident in the
top part of the tree, in which there are almost no branches and the trunk is providing the main
contribution to the backscattering. Consequently, the top part of the trunk is more visible in
the VV image. On the other hand, in the middle and bottom part of the tree, the architecture
is more complex and the differences in polarization are smaller. The backscattered power in
HV is comparable to that in HH and VV, which indicates that the main scattering centers are
associated with the green, outer branches coated with needles which are randomly oriented
in the tree volume.

Fig. 4.21 constitutes a further analysis than that made by comparison between polar-
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Table 4.1. Measurements parameters and resolutions of the ISAR imaging results

Frequency (GHz) Azimuth (deg) Elevation (deg)
Sample Min Max Min Max  Min Max
Fir tree 1.0 55 -12.0 120 28.0 52.0
Ficus 2.0 6.0 -12.0 120 45.0 75.0
Cluster Small Trees (Healthy)| 2.0 6.0 -6.0 6.0 39.0 51.0
Cluster Small Trees (Damaged)2.0 6.0 -7.5 75 375 52.5
Rice 15 9.5 -10.0 10.0 30.0 50.0
Approx. Resolution (cm)

Sample Ground-range \Vertical X-range Horizontal X-range

Fir tree 6 6 15

Ficus 6 6 9

Cluster Small Trees (Healthy) 6 6 22

Cluster Small Trees (Damaged) 6 6 20

Rice 5 5 12

ization responses. Fig.21shows the spatial distribution of the dominant scattering mecha-
nisma and the target entrops/ corresponding to slices taken at zero ground-range and zero
cross-range. It is evident that most values ondheap are close td5°, which reflects the
contribution of the needle-shaped leaves and branches at different frequency scales. More-
over, we can observe some areas Witblose to zero on the outer part of the branches. This
indicates a surface-like behavior with no interaction with other tree parts, and corresponds
to some planar structures formed by branches and leaves arrangements. On the other hand,
there are some small spots near the trunk with values clo® tavhich are due to double
bounce reflections between the trunk and the branches. These conclusions obtain@d from
maps are possible thanks to the roll-invariant properties of this parameter, thus giving the
same response although the constituent particles could be rotated around the line of sight.

The inspection of the entropy maps in Fg21lreveals that at the working frequen-
cies (1 to 5.5 GHz) the entropy is seldom maximum, and usually remains in the interval
0 < H < 0.7. In the slice at zero ground-range (on the left) there are many areas with low
entropy. These are due to two different behaviors. Firstly, parts of the tree exist with a domi-
nant scattering mechanism and low randomness. The low randomness is produced by simple
structures with a size comparable to the resolution cell or high reflectivity, so they prevail
over other scattering mechanisms. Secondly, wines low, the maximum entropy is also
low, as dictated by the feasible region on tHe- « plane. Both cases can be distinguished
by observing the entropy arrdmaps at the same time.
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The ficus is more heterogeneous and, as a result, the reflectivity images can be de-
scribed as a distribution of well-defined spots corresponding to leaves and branches. The
spatial distribution ofx and entropy values is presented in 22 There is a cluster of
leaves in the near-range area that produces a clear surface-like response. This response may
originate from leaves which are oriented normally to the line of sight, thus pointing to the
antenna. The other parts of the image show a dipole-like behavior that may be due to the
scattering produced by the cylindrical branches on which no leaves are pointing to the an-
tennas. For this target the entropy is very low everywhere, as can be expected for a sample
with its physical characteristics, i.e. it is a plant with big and regular components (leaves and
branches) in contrast with the fir tree.

Fig. 4.23shows a comparison between thealues for the cluster of small fir trees in
healthy and damaged status. It is interesting to see that the central tree (a dead one) has dras-
tically changed its scattering behavior, thus justifying the differences studied in Sé@ion

The last example corresponds to images of the rice sample. The first, shown in
Fig. 4.24 is a vertical slice at zero ground-range, whereas &b displays two horizontal
slices at two different heights (0 cm and 30 cm). The rice sample is quite small and, as a
result, it is difficult to distinguish details inside the target volume. However, in the horizontal
slice at 0 cm there are some evident spots witblose t090° which are produced by the
double bounce between the cluster of stems of each plant and the wet ground. At 30 cm the
target does not present those spots any more, but only areas with low and naedalues
which are created by the long leaves that constitute the structure of the plants.
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4.5 Conclusions

The target decomposition theory presented in Chapteas been applied to indoor polari-
metric radar measurements at L, S, C and X band from different vegetation samples. The
analysis has been performed in some complementary ways by computing the outputs of the
decomposition theory from data in different domains. Firstly, the application of this tech-
nigue to frequency domain backscatter data leads to a distribution of points éh the

plane that are related to the dominant scattering mechanisms of the whole target and depend
on the frequency band and the incidence angle. For all samples the dominant scattering
mechanism at steep angles is close to surface type due to the reflection from the ground.
The exact dependence on the frequency band and incidence angle depends on the physi-
cal structure of the target in an obvious way. In most cases the entropy was so high that
the polarimetric information of the frequency domain data is limited, and the targets can be
analyzed only in terms of reflected power and depolarization.

The frequency domain results have been justified by transforming the measured data
into the time domain and thus identifying the position of the parts of the sample that con-
tribute to the scattering mechanisms. The time domain decomposition helps to understand
the scattering processes present in the samples and their dependence on the frequency and
incidence angle, leading to some interesting findings. For example, at X band the penetration
into the maize samples is quite high and, at the same time, there is a strong response from
the leaves. Moreover, maize samples with young and mature plants have shown a differ-
ent scattering behavior as the wave penetrates into the sample, and a differential extinction
coefficient between orthogonal polarizations has been estimated in both cases. Concerning
the measurements of the cluster of small fir trees, the high dependence on the working band
observed in the frequency domain results has been associated with the varying penetration
depth observed in the time domain results. Plots of entropy and average alpha as a function
of range also confirm that this target can be simply modeled as a random volume over a half-
space interface (the ground). The multi-layer vertical distribution of scattering mechanisms
inside the vegetation volume has been demonstrated, so this work validates experimentally
the foundations of polarimetric interferometry.

Finally, some 3-D reflectivity images obtained by ISAR experiments have been em-
ployed, together with the TD technique, for identifying the position and characteristics of
the scattering mechanisms present in the target volume. These results have demonstrated the
complex nature of the interaction of the electromagnetic waves and the vegetation structure,
and the different types of scattering mechanisms have been successfully located inside the
samples.
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CHAPTERS

An Inversion Algorithm for Vegetation

HIS chapter shows how the target decomposition scheme presented in Chayzter

be used for solving inverse problems on vegetation remote sensing. A simple algorithm
is developed for a random cloud of particles that models an homogeneous vegetation layer.
In the method presented here, the target entfd@nd the dominant scattering mechanism
are used as inputs for the inversion procedure. In order to establish the relationship between
these parameters and the physical attributes of the vegetation layer, a three-parameter model
for backscatter from a random cloud of small anisotropic particles is formulated. The three
parameters to be inverted are the particle shape ratio, the mean orientation angle of the cloud
and the width of the distribution of orientation angles.

The chapter is organized as follows. Firstly, Sectiohpresents a scattering model
for a cloud of anisotropic particles. This model provides the relation between the parameters
of the cloud (particle shape and orientation distribution) and the polarimetric observables
of the TD theory used in this thesi¢/(and@). Then, the inversion procedure is shown
in Section5.2, where there are also some examples of its application to experimental data.
Finally, some conclusions are stated in Sectdh

5.1 Particle Scattering Model

The scattering from a cloud of anisotropic particles is considered in the following. The so-
lution of this problem is detailed in AppendR, and only the basic formulas have been
repeated here for the sake of clarity. A schematic representation of a particle is shown in
Fig. 5.1 We assume that only single scattering is significant and that each particle in the
cloud acts independently of its neighbors. Each particle has a scattering matrix in its charac-
teristic coordinate system of the form:

a ¢

[S]:[C d} with a,d,c € C, (5.1)
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Fig. 5.1. Particle dimensions and rotating angles. The particle is shown at orieniatidn 7 = 90°

wherea, c andd are complex scattering amplitudes:

a = py cos @sin® T + pysin® 0 + ps cos?  cos® T (5.2)
d = pysin® §sin® 7 + py cos® O + p3sin® 0 cos® 7 (5.3)
c = (p1sin® T — py + p3cos® 7) cos O sin 6. (5.4)

They are defined in terms of the particle polarizabiliiigsp, andps, canting angle
6 and tilt angler, according to the following expressions:

%
4r (Li+ )
Ly +Ly+Ls=1 (5.6)
1 1 1
Ly:Ly:Ly3=—:—:—, (5.7)
r1 T2 T3

whereV is the particle volume ang; are the particle dimensions. Of particular importance

is the anisotropyA defined as the ratio of eigenvalues[6f and expressed in terms of the
particle shape and material composition as

Ll(er - 1) + 1

A= Lo(e, — 1)+ 1° (5-8)

As is explained in AppendiB, assuming spheroidal shapes so that x5, we can
express the particle anisotroplydirectly in terms of the particle shape ratio= =5/, as

o ome + 2
C om4e +1

0<m < m < 1 Prolate spheroids
SIS 00 m > 1 Oblate spheroids

(5.9)
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From this we see that if the dielectric constant is small£ 1) then the particle
shape makes little difference tband polarimetry is of limited applicability. However,df
is large (as it is for many vegetation remote sensing problems in the microwave spectrum)
thenA becomes strongly dependent on the shape ratio of the particle. In this case polarimetry
becomes useful and we can hope to invert #fjenatrix data to obtain an estimate of particle
shape.

Before getting into the whole problem with more degrees of freedom, let us study
a simpler case. We now assume a generic particle with no tilt angle variation and initially
oriented as in Fig5.1, i.e. with7 = 90° andé = 0°. In this particular situation its scattering
matrix is:

5] = [3 2} - (5.10)

Such a single patrticle has a coherency matrix of the form:

e w0
T]=|pn* v 0, (5.11)
0 0 O
wherein
1
€ = §|a+d|2
1
po= glatdi(d -d)
1
v = §|a—d|2. (5.12)

We can now generate the effect of rotation about the line of sight on the coherency
matrix by pre- and post-multiplying by rotation matrices. This notation was already pre-
sented in ChapteB for studying the effect of symmetries on the coherency matrix. The
coherency matrix of a single particle rotated by an aigte

1 0 0 1 0 0
[T(0)) = |0 cos20 sin20| [T] |0 cos20 —sin26
0 —sin26 cos26 0 sin260 cos26
€ 14 cos 20 14 sin 20

= |p*cos20  wvcos?20  vsin20cos20| . (5.13)
p1*sin 260 v sin 26 cos 20 v sin® 26

If we assume a uniform distribution with meén= (6; + 6,)/2 and widthAf =
0, — 0, for the orientation angle, as shown in Fig2, the analytic form of the coherency
matrix yields p2):

€2A0 p[sin 29]2? p[cos 26] zf
1
([T)) = 555 | #'lsin 202 v[0+ Lsindd]?  iufcos40]yr | . (5.14)

¥ [cos 20 zf tv[cos 46 Zf V[ — 1sin 49]2?
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Fig. 5.2. Uniform distribution of particle canting angles

We see that the structure in this matrix depends on the sum and differences of the par-
ticle scattering coefficients, as well as on the distribution of orientation angles. Note that this
is a more general model than that widely used in the radar litera®3ewWhich normally
supposes a uniform distribution overradians. In this model we can now include the case
of aligned particles. Since natural vegetation may often be expected to have correlated ori-
entation of leaves and scatterers, such an extension is important for attempting quantitative
remote sensing inversion.

In the fully random case, the extreme values@re- 0 andf, = 180°, and([T]) has
the diagonal form shown irb(15 (compare with7}] in (3.153). The eigenvalues of 7))
are then just its diagonal elements and from these we can calculaté the values for a
random cloud.

2¢ 0 0
(=4 0 v 0 (5.15)

If we now turn back to the particles with ellipsoid shape, by changing the anisotropy
A (defined in5.9) it is possible to analyze a variety of shape aspects. &ef 1 we have
either spheres or low dielectric material, fdr< 1 we have prolate particles (needles) and
for A > 1 oblate particles (disks). Fi§.3shows how théd anda values vary as a function
of A. Note the following points:

e For A = 1 the entropy is zero and is zero. The particles are spherical, so the
orientation does not change their aspect

e Prolate particles yield a higher limiting entrop#f (= 0.95) than oblate particlei(=
0.62)

e There is ambiguity as to the oblate/prolate shape of the particl# far0.62.
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Fig. 5.4. Loci of H — @ values for fixed shape and varying orientation distribution

¢ If we plot the H — @ values in a plane then they all lie along curve | in BdL1

It follows from the last point that we can consider curve | in HdL1to be the locus
of H — @ values for a truly random distribution but varying shape. This will be important
when we come to try and invert data to obtain estimates of the orientation distribution.

The next stage of analysis is to examine the case where the particle shape is fixed but
the cloud has a varying distribution of angles. The corresponding coherency matrix (derived
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in AppendixB) has only five non-zero entries which are:

2
(2+ A —3A4?%)sin20
tig = to] = 5.17
12 =t 56 (5.17)
~ (A—1)*(40 +sin40)
toy = 206 (5.18)
~ (A—-1)*(4© —sin40)
tg3 = 300 . (5.19)

Fig. 5.4shows theff — @ loci for this case, where we now further assume that the tilt
angle is uniformly distributed over radians. Here we can see that whér O (i.e. dipoles)
the locus is approximately a straight line at cons@amalue (15° as expected). Hence as
the randomness of the distribution increases it effects mainly the enkfopy the limiting
situation of random distribution we obtain a point on curve Hat 0.95 as expected from
Fig.5.3

As A increases so the loci remain of the same general form, i.e. lines parallel to the
H axis. In the limitA = 1 and the locus is just a point at the origin/éf— « space. IfA is
further increased4 > 1), the loci turn back to points with increasitfjanda. We conclude
from this that the position of alf — @ data point obtained from an estimate(6f]) for the
scattering cloud can be used to infer information about both particle shape and orientation
distribution. Note that there is still the ambiguity between oblate and prolate particles but
only for H values below 0.62. This means that in Fig4 the loci belowH = 0.62 are
bi-valued inA. For each locus there is a value4f> 1 and a valued < 1.

The final stage of this analysis is to consider the extraction of the mean orientation
angled. When the entropy is zero thémrmay be estimated directly from th&] matrix data,
as it was explained in Chapt8r However, as the entropy increases so the estimate becomes
biased by the averaging inherent in the definitioofo investigate the effect of increasing
entropy we show in Figs.5the error betwees and the true mean val@®. We see that the
error is a function of particle anisotropy. For strongly anisotropic particles the error can
be significant.

If for example we have na priori idea about the shape of the particles, then Fi§.
gives an indication of the error in mean orientation angle with entropy. However, if we
can obtain an estimate of particle shape then we can select the appropriate characteristic in
Fig. 5.5to compensate for the entropy bias and hence obtain an improved estimate of the
mean canting angle.

To illustrate the extraction of mean orientation angle we consider the following ex-
amples. We consider a cloud of particles with shape anisotdopy.1. In the first instance
such a cloud is oriented at a mean anglel@f with a spread ott40°. The normalized
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coherency matrix for this case is:

1.000 —0.100 —0.568
(T]) = | —0.100 0.2962 0.014 | . (5.20)
—0.568 0.014  0.3732

This matrix can be expressed in terms of its eigenvalues and eigenvectors and then
estimates obtained fdif, @ and 3. The entropy is{ = 0.5 and thes estimate i$54° so that
the mean orientation is estimated3at. From Fig.5.5and usingA = 0.1 we see that the
expected bias error is aroustiwhich can be used to correct this estimate.

If we consider the same particle cloud but now with a mean inclination of ttly
the coherency matrix yields:

1.000  —0.542 —0.198
(T]) = | —0.542 0.366 0.026 |. (5.21)
—0.198  0.026  0.303

The entropy is agaif = 0.5 but this time the estimate 6fis 4° corresponding to a
mean inclination ok°. Again the corresponding bias8$ which can be corrected through
knowledge ofA.

As an alternative to employing the med@nwe also considered estimating the mean
cloud orientation ag/, i.e. the orientation of the maximum eigenvector[df]). For cloud
simulations, this showed less bias than the Bernoulli mean and so does not require the above
correction. Future studies will address the probem of the best orientation estimator. However,
for the vegetation data considered in this thesis, the entropy is high and the orientation has
a wide distribution (as later shown in Fig§.7). Moreover, the extensive azimuth averaging
that has been used destroys the physical meaning of this angle in the estimates. Hence the
mean orientation is not well defined and we have ignored it in the experimental analysis.



106 An Inversion Algorithm for Vegetation

5.2 Inversion Algorithm and Experimental Results

From the average coherency mat(i{’]) we can obtain estimates of three main parame-
ters: the entropyd from the eigenvalues, the average scattering mechamiand the mean
orientation angles both from the eigenvectors. It is of interest to see if we can use these esti-
mates to obtain the three physical parameters of the particles cloud, namely the mean particle
anisotropyA, the mean orientation angheand the width of the orientation distributic

Using the model of Sectiob.1 we have an analytic nonlinear mapping from the
physical parameters into the observables. Formally we may write

H A
Q=| a r=|6 O =FT), (5.22)
3 0

where the functiorf is given by the definitions off, @ and 3 from the coherency matrix.
If we denote the measured estimatebés ) then the inversion procedure can be formally
stated as

r=r1'Q) with F'= min norm(Q — F(T)). (5.23)

In practical terms the inversion proceeds in the following manner:

1. From anH — @ point obtain an estimate of the two parametérand© as in Fig.5.4
2. Use the estimated value andH to obtain a corrected value

3. From the new3 obtain an estimate af

The most difficult stage is the first, where a two-parameter optimization must be
employed. A straightforward simplex numerical optimization method can be readily used,
as it requires no gradient information and is easy to implement. It is also possible to write
the expressions fol anda as a function ofA and©, which correspond to the parametric
plots in Fig.5.4. Hence, a simple search-and-refinement estimation of the nehsesi©
is performed iteratively.

The application of this inversion method to experimental data obtained from some
vegetation samples is shown in the next figures. Since the method makes the assumption that
the vegetation target is homogeneous, the inversion algorithm has been tested with frequency
domain data. In this way, as it was explained in Chapténe radar backscatter characterizes
the sample as a whole. Attention is payed to the dependence of the results on frequency.
Therefore an estimation of and© is obtained for each frequency in the working band.

Figs.5.6 and5.7 show the comparison of results between the fir tree and the ficus.
The experimental data correspond to a measurement averaged in azimuth and with a small
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Fig. 5.6. Inversion results for the trees data: mean particle skiapeir tree (left) and ficus (right).
Incidence angles 89° — 51°. Frequency range 2 — 5.5 GHz

span in elevation30° — 51°). The frequency span i5— 5.5 GHz. These are the same data
used for computing the left plot of Fig.13 Note that both fir tree and ficus were isolated
(from the scattering viewpoint) and, therefore, the effect of the ground and the ground/tree
interactions is not present in these results.

Regarding the ambiguity cited on Sectin, we have selected the prolate parameters
(A < 1) for the fir tree and the oblate parametefis 1) for the ficus tree. This is also based
on the loci occupied by the points in tiie— « plane for both casedd > 0.62 for the fir tree
andH < 0.62 for the ficus) and on tha priori knowledge about the physical characteristics
of the trees. In any case, even if we did not know whether it was oblate or prolate, the shape
parameters obtained for the two trees would be very different because they are well separated
in H — @. Hence we have a good discrimination in any case and have a two-valued shape
parameter only for low entropyH < 0.62) vegetation.

The next step is the physical interpretation of the results from Bigsand5.7. Note
the following comments on the results from the fir tree:

e For frequencies below 3.5 GHz the backscatter appears to be dominated by particles
of fixed anisotropy (aroundl = 0.12). This fact gives rise to a lower entropy than at
higher frequencies, reflecting the fact that scattering here is dominated by larger scale
branch and trunk structures.

e For frequencies above 3.5 GHz the backscatter mechanism changes and becomes dom-
inated by scatterers of different shape at different wavelength scales. In this transition
region the particles become more and more anisotropic (more like needles) and the
width of the angular distribution increases. This is consistent with scattering from
smaller scale branches and needles.
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Fig. 5.7. Inversion results for the trees data: spread of orientation afylésidence angles 39° —
51°. Frequency range 2— 5.5 GHz

e Atthe shortest wavelength the scattering is dominated by the smallest scale needle like
structures on the tree, which have essentially a random distribution (a random cloud of
dipoles) and highest entropy (0.95).

As expected, the results from the fir tree are consistent with the particle model em-
ployed in the inversion, since the structure of the tree (trunk-branches-leaves) is regularly
scaled as a function of the frequency. Consequently, different parts of the trunk have been
identified in the model at different frequencies, following a continuous change. However,
this is not the case for the ficus tree. This kind of tree has two completely different com-
ponents in its morphology: leaves and branches. As was stated previously, leaves are fairly
elliptical disks and branches are cylindrical. We can see inF:i@gthat for lower frequen-
cies (less than 2.5 GHz) the particles present high valuef abrresponding to clouds of
disks, which are the dominant mechanism in this case. At higher frequencies, the disks are
more directive and only some of them are pointing to the receiver due to their random ori-
entation. Thus, their response is averaged with the response from branches. Consequently,
the A values shown in the results are not directly related to any single scattering mechanism
from the ficus. In addition, the constituent particles of the ficus are not electrically small at
the working frequencies (for instance, the wavelength at 5 GHz is 6 cm whereas the leaves
are more than 20 cm long), thus making difficult the applicability of this technique to such a
vegetation type.

The width of angular distribution behaves for both trees in a similar way. This can
be explained by looking at th& — @ loci in Fig. 4.13 The data are close to curve | at
the border of the feasible region, and this curve corresponds to azimuthal symmetry, so



5.2 Inversion Algorithm and Experimental Results

109

‘0w
©
0.3 Yoo
L 8\ B 7
r Healthy trees © \% e te ~ i
= [ 2 75 o, U
- | ----Damaged trees c I AN 1
o .0 M
© 021 8 S 60k _
= L o b
o | =
(%] l 4 -
c | <7 / L45 - *
< i " > ! \\ / g; o
< 1\ ny ] \\ A S N /\// il o
O . I N JU\ [Y N AV \ I = 30, —
T O X ,’”’ b A \\// I =8 Healthy trees
) L . v C
& m f i N
[ O
0.0 1y L . c ol
2 3 4 5 6 7 8 9 10 = 2 3 4 5 6 7 8 9 10

Fig. 5.8.

Frequency (GHz)

Frequency (GHz)

Inversion results for the cluster of small fir trees in healthy and damaged status: mean

particle shaped (left) and spread of orientation angl@s(right). Incidence angle 50°. Frequency
range =2 — 10 GHz

there is no dependence on orientation at all and both distributions are very wide. It is the
H — @ values which provide the discrimination between these data sets, not the width of the
orientation distribution.

According to the variability present in Fi§.7, it is important to state that it is due
to the randomness of the input data, but not to any potential sensitivity of the inversion to
small errors in the input data. The fairly wide separation between loci indgndicates
that this technique is basically robust because small changes in the input data will give small
changes in the inverted parameters. However, for our data the entropy is high and so their
statistical variability is high, requiring a large number of looks for good estimates of the
eigenvalues and hence tite — @. Details of the variance of the estimates vs number of
looks can be obtained by assuming Gaussian statistics and employing the complex Wishart
distribution [L57].

The second experimental result corresponds to the cluster of small fir tree§.8-ig.
illustrates the estimates df and© in the frequency range — 10 GHz for both states of the
trees: healthy and damaged. In this case the sample was not isolated from the ground, so the
ground-trunk interaction may influence the results since the incidence angi#®was

The first interesting feature of the inverted particle anisotrdgyg the clear distinc-
tion between the healthy and the damaged situation at all frequencies. The healthy trees
show a very low value ofi at all frequencies, thus revealing that the target is quite homoge-
neous and that its scattering is always dominated by the green needles. On the other hand,
the damaged case exhibits a mainly uniform value about 0.1, which is nearly the same as the
solitary fir tree at low frequencies. This phenomenon can be justified by the influence of the
dead trees with no green needles, whose scattering is produced by the branches and trunks.
The superposition of responses by dead and living trees is somewhat equivalent to the sum
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of responses by the needles and branches in the solitary fir tree.

Another conclusion can be stated from the plots of the width of angular distribution
for both cases. The healthy sample, as could be expected from the dominance of the needles
as scatterers at all frequencies, shows a very high valé ofhis value is close t60°,
which correspond to a fully random cloud of particles. In contrast, the damaged sample
only exhibits the same high value 6f from 6 GHz. Therefore, for lower frequencies the
orientation distribution is not fully random. Anyway, this apparent lack of randomness must
be analyzed by taking into account which are the effective scatterers at those frequencies,
since we can expect to have a mixed response by living and dead trees as stated before.

So far, a comparison of the estimated particle anisotropy with the actual anisotropy
(ground truth data) has not been tried. This exercise will be carried out in the future as part
of an ongoing detailed morphological structure analysis of the vegetation samples, that was
initiated with the fir tree 153 154].

5.3 Conclusions

In this chapter it has been shown how an eigenvalue analysis of the average backscatter
coherency matrix may be employed with a simple model of particle scattering to understand
the physical basis of the radar observables in a clearer way than is obtained by looking at
a simple polarimetric ratios such a HH/VV. In particular, it has been demonstrated that the
H — « plane is a useful representation of the average properties of the data. On this plane,
effects due to particle shape and orientation distributions are well separated, and hence one
can employ this method in a robust inversion procedure to estimate the physical parameters
of a cloud from experimental radar data.

The application of the algorithm has been validated with data collected at the EMSL
from a fir tree, a ficus tree and a cluster of small fir trees. The results show a wavelength scale
dependence of the shape and distribution of scatterers which reflects the complex volume
scattering nature of such targets. These results indicate that such an inverse model can be
usefully employed for the study of canopy scattering effects and for the inversion of radar
data for vegetation and forestry classification problems. Although such shape and angle
distributions are built into forward scattering models like vector radiative tran8&rthis
is the first attempt known to the author to extract these parameters from radar data in an
inversion process.

On the other hand, the mean orientation has already been applied to the extraction of
surface slopes of non vegetated terraingi) 155 156 (based on the polarization signature)
and in [L57 (based on the TD theory used in this thesis). In the experimental examples
presented in this chapter the entropy is so high that the orientation distributions are wide
and, therefore, the mean orientation is not a useful parameter. This is because we have
carried out extensive averaging over azimuth to produce the estimates.



CHAPTERG

Polarimetric SAR Interferometry:
Retrieval of Vegetation Height

HE technique proposed in this chapter for the extraction of vegetation height estimates

from SAR data consists basically in generating simultaneously various interferograms
of the same scene. It has been demonstrated so far in this thesis that parts of trees or plants
with different morphological characteristics exhibit different scattering behaviors. If those
parts are physically located at different heights inside the vegetation volume or are character-
ized by dissimilar vertical distributions, their effective phase centers should be placed also at
different heights. Since we have shown that polarimetry can distinguish between scattering
behaviors, it can be applied to this problem in order to form interferograms associated with
particular scattering mechanisms.

SAR Interferometry (INSAR) is a technique based on combining two SAR images of
the same scene acquired from different positions and/or at different times. So far, INSAR
has been widely used for topographic mapping (DEM generation) and detection of small
coherent movements (differential interferometryb@-[160. Moreover, in the last years
INSAR has been also applied as an important tool to retrieve physical parameters of terrestrial
surfaces. Whatever the final application is, accurate interferograms are required. The quality
of the interferograms is closely related to the degree of correlation between the two complex
SAR images, which is formally defined agerferometric coherencelhe interferogram, or
equivalently thenterferometric phaseis a measure of the path length difference between
the target and the two sensor positions. It can be used to derive the 3-D position of the image
resolution element, allowing the generation of height maps. The interferometric correlation,
or coherence, is a measure for the variance of the interferometric phase. It depends on two
kinds of parameters: characteristics of the radar system (and data processing), and physical
properties of the imaged scene. In this chapter, some basic definitions about INSAR will be
cited for completeness, but the emphasis will be placed only on the aspects directly related
with the extraction of vegetation height by means of polarimetric SAR interferometry. An
exhaustive review of INSAR, including a complete bibliography, can be consultééih [

In order to establish an unified framework for studying polarimetric INSAR, a gener-
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alization of the interferogram generation to the vector case is presented in this chapter. This
generalization enables the use of all the polarimetric information of both images to form
interferograms, and was originally proposed68]|

It will be shown that the choice of the scattering mechanisms employed for construct-
ing the interferograms relies on two general approaches. The first consists in a selection
based on am priori knowledge of the distribution of scattering mechanisms present in the
scene. For example, if one knows that the two main contributions to backscatter are the direct
scatter by the crown of the trees and the ground-trunk interaction, one can decide to form
an interferogram with surface scattering type (be= 0° or usingsS,,, + Snx) and another
with dihedral type (i.ea = 90° or usingsS,, — Sp,). The second approach is not based on
ana priori decision but on the solution of a fundamental issue in INSAR: the maximization
of the interferometric coherence. It has been shown that the application of polarimetry to
this issue leads to a new kind of decomposition of the scene scattering properties, which in
turn enables the extraction of vegetation heidgi#.[ Both approaches are analyzed in this
chapter and compared with experimental data.

This chapter is organized in two main sections and a third with concluding remarks.
Section6.1 describes the theory necessary to understand the proposed method, while the
experimental results are presented and discussed in Séction

6.1 Theory

The basic definitions concerning INSAR, with special mention of the interferometric coher-
ence, are stated in the first section. Secondly, the generalization to vector interferometry is
presented, and the coherence optimization by using polarimetry is detailed. This optimiza-
tion also implies a new type of target decomposition that is explained in the text. Finally,
the application of polarimetric radar interferometry to the retrieval of vegetation height is
justified. Special emphasis is also placed on the comparison between the height retrieval
by using the coherence optimization and that obtaine@ lpyiori assumptions about the
scattering mechanisms.

Most of the formulation presented in this chapter has been replicated &@ntHow-
ever, all aspects that are considered to have important consequences on the estimation of
vegetation height are intended to be explained more thoroughly in this thesis.

6.1.1 Interferometric Coherence

There exist various INSAR configurations depending on the system parameter that changes
between the acquisitions of the two images employed to create the interferogram. The ac-
tual configuration defined by the EMSL geometry is equivalent to conventammass-track
interferometry, i.e. the images are measured from two slightly different incidence angles.



6.1 Theory 113

Therefore, the following formulation will be presented on the general basis of an across-track
INSAR system. The particular geometry of the EMSL will be described in the experimental
results (Sectio%.2).

An interferogram is the cross correlation between two complex sighadsd s,
which correspond to the same physical cell, but are acquired from two spatially separate an-
tennas. In our case; ands, denote the complex reflectivity values at two incidence angles,
0, andf,. The physical separation between the two antenna positions is balketine The
interferometric phase is expressed as:

¢ = arg (s153) , (6.1)
where* means complex conjugation.

The interferometric coherence can be defined as the absolute value of the normalized
complex cross correlation between both signals:

|<818§>| (62)

v= ,
(5157)(s253)

where(.) indicates the expectation value. By definition, the coherence ranges in the interval
0<vy< L

Coherence is an essential parameter in interferometric applications, because the accu-
racy of the estimated interferometric phase is degraded by any loss of coherence. Following
the explanations given irbp)], the interferometric coherence can be modeled as a product of
different contributions:

Y = VSNR * YTemporal * YBaseline- (63)

The first termy sy g, represents the decorrelation caused by additive noise. A simple
formula can be derived for this term if the same signal-to-noise ratioR) is assumed in
both images, yieldingl[67:

1
1+1/SNR’

The dependence i6(4) means that the influence of  is restricted to areas in the scene
that exhibit low backscattering.

VSNR = (6.4)

The second contributionyz.,.p0rai, 1S the temporal coherence of the scene. In this
case, decorrelation can be originated by changes in the scene occurring during the time inter-
val between the two acquisitions. These changes may be due to alterations in the geometry
and/or the scattering behavior of the scatterers inside the resolution cell.

Finally, the third source of decorrelation is the separation between the two antenna
positions (baseline decorrelation)z.s.ine Characterizes the loss of coherence due to the
difference in perspective from the two positions, since the same scene is viewed from a dif-
ferent look angle in each image. This contribution has been well analyzed by employing
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the Fourier domain. The difference between the two viewing angles produces a shift and a
stretch of the two imaged terrain specti&§. In the case of pure surface scattering, this
decorrelation can be compensated by shifting the transmitted central frequency during the
second measurement or by removing the disjoint parts of both spectra by a common band
filtering [163. However, any distribution in height of the scatterers inside the resolution cell
produces a spectral decorrelation (a change in the shape of the spectra) that cannot be com-
pensated by spectral filterind§4]. A possible way to reduce this volume decorrelation is to
exploit multiple baseline take4 $5, which implies collecting data from multiple surveys.

A close inspection of these sources of decorrelation reveals that the last two, namely
Yremporal 8NAYBaserine, MUSt be strongly influenced by the wave polarization used in the im-
ages generation. This influence derives from the origin of these two decorrelation sources:
the change (due to perspective or time) in the scattering behavior of the scene between both
images. As demonstrated in previous chapters of this thesis, polarimetry deals with the vec-
tor nature of the electromagnetic waves and enables the identification and characterization
of the scattering mechanisms present in a natural scene. Next sections illustrate how po-
larimetry can be applied to reduce the decorrelation between the two images that form the
interferogram, thus improving the final accuracy of the interferometric phase.

6.1.2 Coherence Optimization by Polarimetry

We have seen in Sectidghl.1that both temporal and baseline decorrelations are produced

by a different scattering behavior of the scene in the two images. The general idea of ap-
plying polarimetry to optimize the interferometric coherence consists in selecting arbitrary
scattering mechanisms in the SAR images, and hence choosing those scattering mechanisms
that maximize the interferometric coherence. The polarimetric optimization of the interfero-
metric coherence has an exact formal solution which has been formulat&4.in [

6.1.2.1 Vector Interferometry

The derivation of this formulation is based on an extension of the interferogram formation,
described above, to the vector case. This extension is also needed for incorporating all
polarimetric information into the coherence problem.

The generalization of the interferometric phase and coherence to the vector case
makes use of the target vectors defined in ChapteiThose target vectors are simply a
vectorization of the scattering matrix that contains the full polarimetric information associ-
ated with each pixel of the SAR images. For convenience, the vectorization selected in this
section is based on the Pauli spin matrices. Its application to the case of backscattering from
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a reciprocal medium yields the following target vector:

1 va + Shh
k=— va - Shh ) (65)
V2 o,

which corresponds tksp in (3.88. Note that this formulation can be also derived on the
basis of theks;, vectors (see Chaptéj.

In interferometric measurements, the polarimetric information of both SAR images
will be contained in two different scattering vectoks, andk,, for image 1 and image 2,
respectively. Using the outer products formed by combinations of both scattering vectors, it
is also possible to define the followirsgx 3 matrices:

[T11] = (kiki") (6.6)
[Ths] = (kok3") (6.7)
(2] = (kik3"), (6.8)

where|[T7,] and[T},] are the standard coherency matrices containing the full polarimetric
information for each separate image as defined in Ch&pégerd[(2;,] is a new3 x 3 complex
matrix that contains not only polarimetric information, but also the interferometric phase
relations of the different polarization channels between both images

Since the interferogram is, by definition, the complex cross correlation of two scalar
complex numbers, we need to convert the polarimetric information containedandk,
into scalar numbers. In order to perform that conversion, two normalized complex vectors
w; andw, are introduced. Then, the scattering coefficiemtsand 1, are defined as the
projection of the target vectoks andk, onto the vectorsv, andw,, respectively:

o =wi 'k (6.9)

The scalar valueg; and, are linear combinations of the elements of the vedtgrs
andk,. The coefficients of these linear combinations are the entries of the vectanrd
wy. Using the scalar values i16.0)-(6.10), one can obtain a new expression for the vector
interferogram formation as:

papy = (wi'ks) (w3'ka)” = wiT[Qua]w, (6.11)
from which the interferometric phase is:

¢ = arg (u1pus) = arg (WTT[QM]WQ) . (6.12)

1The expectation value symbolg have been omitted in the notation of the matrices for simplifying the
formulation. In the following, a matrix denoted §¥] corresponds to an average matrix (denoted(&d in
other chapters).
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Moreover, the interferometric coherence can be generalized to the vector case, yield-
ing:
(paps)) (Wi [Q1a)w,)|

— = 6.13
! V) (peps) (Wi [Tialwr) (Wi [To]wa) (643

As explained in Chaptes, the normalized vectore’; andw, can be interpreted as
two scattering mechanisms, since tP@nt Target Reduction Theoreimtotally applicable
to these vectors. Consequently, the calculus consisting in the projection of the measured data
k; andk, onto these vectors is equivalent to the selection of arbitrary scattering mechanisms
in both scenes.

Another comment should be made about the generalized expression of coherence
in (6.13. Itis important to realize that ifv; # wy, we are affected by two different cor-
relations: the already explained interferometric contribution, and a polarimetric correlation
between the two scattering mechanisms correspondirng @ndw,. As a result, the total
coherence can be described as the following product:

Y = YiInt * YPol, (614)

whereyy,; corresponds to the original interferometric coherence showd. ). (Only in the
case ofw; = w, doesyp,; become one angl = v;,,;.

6.1.2.2 Coherence Optimization

The idea of the polarimetric optimization of the interferometric coherence, presenéd) (
consists in choosing the linear combinations of polarization channels that yield the highest
coherence. In other words, we can optimize the coherence by properly selectamgw,.

This optimization problem has been solved &%][by maximizing the complex La-
grangianL defined as:

L= WIT[QH]WQ + M (WIT[TH]Wl - Cl) + A2 (WzT[TQZ]W2 - 02) ; (6.15)

where); and)\, are Lagrange multipliers introduced for maximizing the numerato df3j
while keeping the denominator constardf; and C, are constants. By setting the partial
derivatives to zero, we arrive at the following pairdok 3 complex eigenvalue problems:

[Tn]fl[le][T22}71[912]*TW1 = VWi

- « - (6.16)
[Toa) Qo] [T11] 7 [Qu12]we = vwa,
wherer = A 3.

Both equations in§.16) share the same eigenvalueslt is possible to demonstrate
that the three eigenvalues are real and non-negative,ie.r», > v3 > 0. Each eigenvalue
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is related to a pair of eigenvectors{, andw,,, with j = 1,2, 3), one for each image. The
maximum coherence is given by the square root of the maximum eigenvalue:

Yopt = \/V_h (617)

while its corresponding eigenvectors are denoted aofftenumones: w;, , andw;,_,.
Therefore, to find the interferogram with the highest possible coherence, we project the
target vectorsk, andk, ontow,_, andw,,,, yielding the two optimized scalar complex
valuesy,,, andps,,,,. The resulting interferometric phase takes the form:

¢ = arg (/’Llopt/’bzopt) = arg <W’1kz;tk1k§Tw2m> = arg (Wﬁ;t [ng]w%m) . (6.18)

Since the absolute phase of the eigenvectors is not uniquely definesl 1), (it
IS necessary to use an additional condition which establishes the phase difference between
them. One way to solve the problem is based on the fact that all the interferometric phase
information must be contained only in the complex scattering vedétpendk,, SO we can
use the following condition:
arg(wﬁ;twgom) = 0. (6.19)

Regarding the existence of solutions 116, it depends on the availability of the
inverse matricefly;]~! and[Ty,]~'. In practice, image coherency matrices are of full rank 3,
thus enabling this computation. Otherwise, the formulation can be rewritten for the special
case of rank 2 or les$9).

The interferometric coherence optimization by means of polarimetry has been for-
mally stated by proposing a generalized definition of coherencg 11§)( The solution pre-
sented in §9] makes use of a Lagrange function to find the optimum veatqrg andw,,,.

An alternative solution has been recently publishedlisq. This new approach avoids the
presence of the Lagrangian by introducing the concept of metritraction This new an-
alytical scheme seems to be more compact. Furthermore, it enables a new interpretation of
the results. For example, the particular case of no backscattering in the cross-polar channel,
which leads to sub-optimum results, has been treated and successfully derived. The math-
ematical derivations of this alternative procedure are out of the scope of the present thesis,
since its application to the vegetation height estimation is totally equivalent to the former
method.

A possible physical interpretation of the optimization procedure was also explained
in[69]. It has already been shown that the proposed algorithm deals mainly with two sources
of decorrelation?yremporar @NAYBaserine. The choice of the optimum vectove can be un-
derstood as the extraction from the data of a deterministic scattering mechanism that has the
closest possible relation topmint scattererin order to reduce the height distribution of the
scattering centers inside the resolution cell to a point. In this way, the volume decorrelation
is removed fromyg,..1ine @nd the coherence is improved. However, in the case of important
temporal changes in the scene between both images, the optimization will lead4ow,

(a loss in the polarimetric correlatioys,,;), and therefore the algorithm cannot provide any
improvement as the coherence will remain low, independently of the choice of polarization.
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6.1.2.3 A New Target Decomposition

We have seen that the solution of the coherence optimization has the form of a pair of eigen-
value problems. Consequently, the obtained solutions should exhibit all the intrinsic charac-
teristics of any eigenvector problem. This is illustrated in the following.

We have denoted the pairs of eigenvectorgws , wy, }, with j = 1,2, 3. The first
vector pair{w,, wy, } is related to the highest eigenvalue, and represents the pair of opti-
mum scattering mechanisms. These optimum scattering mechanisms have been found in the
complete 3-D complex space of the target vectarandk,. The second paifwy,, ws, },
corresponding to the second highest eigenvalue, is contained in the 2-D subspace orthogonal
to the first pair of eigenvectors. Within this subspace, they can be interpreted as the opti-
mum scattering mechanisms. Finally, there remains a 1-D subspace orthogonal to the 2-D
subspace generated by the first two pairs of eigenvectors. The third pair of eigenvectors,
{w1,, W, }, related to the lowest eigenvalue, represents the optimum scattering mechanisms
within this 1-D subspace.

In a way similar to the target decompositions (TD) described in Ch&ptae3 x 3
matrices appearing ir6(16 can be expressed as a linear combination of three matrices that
correspond to the outer products of the eigenvectors:

[Tn]*l[ﬂlz}[T22]71[Ql2]*T =1 (Wllwf) + V2<W12Wg) + V3<W13WT3T>

B . - i . . (6.20)
[Too) ™M 2] [T12] 7 [12] = 11 (wa, Wi ) + va(Wa, Wi ) + vs(wa w3 ).
Physically, the orthogonality exhibited by the eigenvectors can be interpreted as sta-
tistical independence between the scattering mechanisms they represent. Therefore, one can
now form three different interferograms, each one related to a scattering mechanism inde-
pendent from the others:

i, = (wilks ) (walks) = wiT [Qus]ws,. (6.21)

The construction of these three interferograms from the same scene enables the calcu-
lation of the relative phase differences between them, which in turn represent the topographic
difference between the effective phase centers of the corresponding scattering mechanisms.
The phase difference between two mechanisargd; is given by:

Ady; = arg(p;pa,) — arg(p; 113, )- (6.22)

The main difference between the new target decomposition formulatéd?ig) and
other proposed decompositions (see Chaptes that the selection of the scattering mecha-
nismsw is performed on the basis of an optimization of the interferometric coherence. As
a result, the interferogram generated by using the optimum scattering mechanisms has the
highest possible coherence, thus permitting the most accurate estimation of the interferomet-
ric phase. This optimum accuracy would not be achieved if one construct an interferogram
by employing an arbitrary scattering mechanism such as a linear polarization (HH, VV or
HV) or a Pauli matrix (surface, dihedral, etc.).
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6.1.3 Vegetation Height Retrieval: Approaches

The simultaneous construction of various interferograms from the same scene, correspond-
ing to different scattering mechanisms, constitutes the basis of the application of polarimetric
radar interferometry to vegetation height estimation. In general, vegetation volume is a very
complex and heterogeneous medium. This physical complexity or lack of homogeneity can
be considered, from the point of view of the radar, as an advantage for solving the problem
of extracting the height of plants or trees. The reason is that the parts of the plants with dif-
ferent morphology exhibit different scattering properties. For instance, a forest scene can be
regarded as a multilayer structure (e.g. crown-branches-trunks-ground) with different scat-
tering behaviors along the vertical direction (e.g. dipoles-surfaces-double bounces). The
phase differences between interferograms represent the topographic difference between the
effective phase centers of the corresponding scattering mechanisms. Then, the height differ-
ences are directly related with the absolute vegetation height. The exact relationship between
them depends on the particular parameters of the vegetation target (dielectric geometry) and
on the radar system parameters (frequency, incidence angle, baseline, etc.).

In Section6.1.2.3the choice of the scattering mechanismgo form the interfero-
grams is based on the optimization of the interferometric coherence. In this way, three pairs
of scattering mechanisms are selected. The first produces the highest coherence, whereas
the other two yield lower coherences. In case of a non vegetated surface, all three pairs of
scattering mechanisms produce interferograms centered at the surface topography. The inter-
ferogram with best quality is that generated with the optimum pair because its coherence is
the highest. When we are interested in computing the height of a vegetation volume present
in the scene (or an estimate related to the absolute height), we have to calculate the phase
difference between first and second, or second and third, or first and third. A first prob-
lem arises at this stage on the real interpretation of those scattering mechanisms. wectors
are selected to maximize the coherence, but no information is provided about their relative
position inside the vegetation volume. In other words, it is possible to find the optimum
scattering mechanisms located at the top of the plants, or at the ground level, or somewhere
in between. Therefore, we cannot infer which mechanisms should be used for calculating
the best parameter related to the actual height of the plants. In second place, although the
first scattering mechanism produces a high coherence, nothing is said about the other two.
As a result, the height differences between them may also exhibit a non-negligible variance.

In contrast with this choice resulting from the coherence optimization, a selection
based on the knowledge of the scattering properties of the imaged scene can be employed.
It consists in deciding priori which scattering mechanisms should be used for generating
the interferograms. For example, if one knows that the cross-polar return is mostly produced
by the crown of the trees, and that the horizontal polarization backscatter comes from the
ground-trunk interaction, two interferograms at HH and HV should be computed. Evidently,
the advantage is the easier interpretation of the scattering mechanisms we are dealing with.
The drawback is that it requires a previous knowledge of the scene.

As far as the phase accuracy is concerned, it will be shown in the next section that the
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variance of the relative height differences is quite similar in both approaches, because most
of the times the selected scattering mechanisms in the second approach exhibit coherences
of the same order as those of the optimization.

Both approaches have been compared in this chapter. In the second method, two
simple selections have been proposed. The first corresponds to interferograms with the three
elements of the scattering matrices in thé basis, i.e. HH, HV and VV. The second choice
consists of the Pauli matrices, i.e. HH+VV, HH-VV and HV. It will be demonstrated that
both cover most cases of scattering from vegetation, and present clear physical interpreta-
tions, thus being well adapted to this problem.

According to the generalization of the interferogram formation to the vector case, the
same formulation holds for the alternative approach by using the following pairs of scattering
mechanisms (with the sanvein both images):

v—h Basis: W, = Wo =

Sl-

Sl
O = =

o= o
<
w
I
oo

1
Pauli Matrices: w; = |0 Wy =
0

—_

Note that the order is arbitrary in these cases, since it is not related to the coherence
provided by each scattering mechanism.

The first work about a method based oregpriori selection of the scattering mecha-
nisms has appeared recently irb[[]. That study deals with the extraction of height of forests
stands. For the choice of polarizations the authors analyzed the components of backscatter-
ing for such forest stands at L band. At this frequency, they demonstrated that the phase
center for HH polarization tends to be close to the ground, while that for HV polarization is
located somewhere up in the canofy. This behavior is due to the main contributions
to each polarization. The scattering for HH is predominantly created by the trunk-ground
interaction, whereas for HV the direct backscatter from branches is dominant. The authors
computed the height difference between the interferograms for HH and HV polarizations
and later, by using a coherent scattering model for the trees, converted this value into an
estimate of the height of the entire trees. The comparison with ground truth data was quite
satisfactory, and a sensitivity analysis of the system parameters was also presented. The in-
terferograms at HH, HV and VV have been also applied in the experimental results presented
in the next section. However, in this thesis, no coherent scattering model has been employed
for relating the height differences with the total physical height.

From the reasons explained above about the selection of polarization for each in-
terferogram, it follows that perhaps better estimates would be achieved by employing the
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scattering mechanisms corresponding to the Pauli matrices. For example, the trunk-ground
interaction is a clear dihedral behavior whose return is mainly present in the subtraction of
copolar responses, HH-VV. Furthermore, the direct scattering from the canopy could be bet-
ter modeled by the odd scatterer polarization, i.e. HH+VV. This decomposition has been
also applied in the experimental results of Sectidh

With regard to the interferograms generated by employing the scattering mechanisms
resulting from the coherence optimization, to date two test sites have been presented in the
literature: 1) an area with corn fields in Switzerland, measured at L band by E-S#R |
17Q, and 2) a mixed forestry/agricultural area close to Lake Baikal, measured at L band by
SIR-C [69]. In the first case an approximate height of about 2.2 m was estimated for corn
fields, but no ground truth data were available. In the second, a comparison with the actual
ground truth was recently published ih/[l]. These references introduce an important point
that is carefully considered in the following.

Since the original publication of the coherence optimization by polarimetr§dh [
no details have been provided by the authors about the practical implementation of the veg-
etation height retrieval algorithm. In all results it has been stated that the final height is
retrieved by using the optimum scattering mechanisms. However, it is not said whether they
use the two mechanisms associated with the first and second eigenvalues, or just the two most
separate inside the vegetation volume. As will be shown in the next section, this criterion has
important implications in the final estimated height. Moreover, a comparison between the
results obtained by the optimum polarizations, and those provided by using HH and HV, or
HH+VV and HH-VV, was also presented if/{1]. The comparison fails to state the criterion
for the optimum mechanisms, but in the discussion it is said that the results provided by them
are well adjusted to the true height of the trees, whereas the other choices of polarizations
underestimate the height. It seems that the comparisdrYifj {s not consistent since in one
case they use the two most separate centers in a group of three, whereas in the other they
only look at two centers. In the next section, it will be demonstrated for different vegetation
samples that all three choices provide similar estimates if the most separate mechanisms are
employed. Moreover, the authors dffl] expected to retrieve the total height of the trees
directly from the interferogram differences. This is not totally correct, because the scattering
centers can be located anywhere inside the volume, and not necessarily at the top and bottom
extremes of the trees.
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6.2 Experimental Results

The geometry employed at EMSL for the interferometric experiments is depicted i&. Eig.

Since the range from the antennas to the focus is constant and kRgwthe interferometric

phase can be studied in terms of the path difference between the ranges to a target point
located at coordinatgd’, H). The phase can be expressed as:

¢ =2k(Ry — Ry) ~ 2k [Y (sinf; — sinfy) + H(cos; — cos )], (6.23)

wherek = 27 f /cis the wavenumber at the central frequency, and the transmission-reception
procedure is repeated for each antenna position.

The expression ing;23 presents a dependence of the interferometric phase on both
spatial coordinate® andH. Itis known that the dependence on the ground-range variable
can be canceled by applying a so-caeavenumber shiftL64)]. It consists in changing the
transmitted frequencies in both measurements. Note that when this frequency shift cannot
be implemented at the measurement time, it can be applied later as a spectral filtering which
eliminates the non-coincident bands in both images. In fact, the wavenumber shift is applied
for improving the coherence, since it reduces the baseline decorrelation as was commented
in Section6.1.1 In the case of the experiments at EMSL the wavenumber shift can be readily
applied by selecting different frequency bands for the images, because the data are always
acquired over a large bandwidth with a small step between frequei&ids [

The introduction of a change in the transmitted frequency affects the phase formula
in (6.23, yielding:

QZS = 2(1{72R2 - k?lRl) ~ 2[Y<k1 sin 91 — ]{32 sin 92) + H(k’l COS 01 — ]{32 COS 92)] (624)

The spectral shift between the two images is intended to remove the dependence on
Y. Therefore, it must satisfy:

kl sin 91 = k‘Q sin 02, (625)
zA (2

Ro Ri/

01
02 R2
EMSL focus

H Ro

Y "y

Fig. 6.1. Geometry of the interferometric experiments at EMSL
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that substituted ing.24) yields

in6
¢ =2k H (cos 0, — SO coS (92) ) (6.26)

sin 92

In order to achieve a more compact notation, the following variables are introduced:

6, + 0
0, 1; 2 (6.27)

If we assume thaf\@ is very small, we can apply the following approximations:

sin 0y = sin(fy — Af) ~ sin Oy — Af cos by (6.29)
cos B = cos(0y — Af) >~ cos by + Af sin by, (6.30)

that substituted intog(26) yield:
Af

sin 92 )

qb ~ 2]{71[‘[

(6.31)

Finally, from (6.31) we can express the interferometric phase as produced by the
variation along the vertical coordinate

o»=k.H, (6.32)
with the following effective propagation constant

k, = 2RA9 (6.33)

sinf,

The set-up employed at EMSL is different from that used in conventional SAR in-
terferometry since the whole vegetation sample must be confined inside a single resolution
cell in order to apply the algorithm and, as a result, there is only one pixel in each image.
Consequently, spatial averaging cannot be performed. Instead, two alternative averaging
techniques have been used. The first consists in rotating the target in azimuth in order to
obtain independent samples. The minimum angular step that provides statistical indepen-
dence between samples depends on the target size in terms of the wavelength. The second
approach is known as frequency averaging or frequency agility, and is based on collecting
the radar returns from non-overlapping frequency bands. Both techniques are equivalent to
some extent, as explained ih72. In most cases both methods have been combined for
achieving a large number of samples and reducing the final variance of the estimates.

Two kinds of scanning geometries have been employed. The first consists in measur-
ing the backscattering at a few closely-spaced incidence angles, and rotating the sample in
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azimuth oveB60° in order to obtain as many independent samples as possible. The second
type of measurements was originally planned for three-dimensional inverse SAR (ISAR)
imaging. Its particular characteristic is that the target is rotated only about a narrow angular
span (typically10° to 20°), and it employs a very small step as is usually needed in radar
imaging. Consequently, the number of independent samples in azimuth is low for our pur-
poses, and additional frequency averaging must be applied to reduce the variability of the
results.

In order to minimize the phase noise and hence to improve the accuracy of the height
estimates, the interferograms for each scattering mechanism were multi-looked over the en-
tire set of independent samples. The importance of this multi-look procedure is justified
below with experimental results. The number of samples, which can be regarded as pixels
of a conventional image, changed between experiments as was explained above. Note that
we are not affected by the loss of resolution that the multi-look procedure entails because
our scene is completely homogeneous (in fact we are always looking at the same target).
The conversion from interferometric phase to height is calculated by usi@g (It is also
important to emphasize that the estimates presented in the next results are not affected by
phase ambiguities because the maximum height of the plants (plus the standard deviation)
does not exceed the ambiguity heigh®{].

The application of polarimetric radar interferometry to the estimation of vegetation
height has been tested with three different samples: the maize sample C, the cluster of small
fir trees and the rice sample (see photographs and physical descriptions in Ghaptes
experiments on the maize sample were carried out over the whole azimuth range, whereas
the other two correspond to imaging configurations. The results for the maize will be more
extensively analyzed than the other two because they are less exposed to biases and inaccu-
racies thanks to the larger number of independent samples.

Two experiments were carried out on the maize sample. In both of them the incidence
angle ranged from4° to 45° with a step 00.25°, and the target was rotated in azimuth with
a step ob°, thus obtaining 72 independent samples. The frequency span was 0.3 to 4.3 GHz
in the first case and 1.5 to 9.5 GHz in the second. The reflectivity images were computed
with a narrow bandwidth (40 MHz) in order to enclose the whole target inside the resolution
cell. In the next figures, the displayed frequency range is limited to L, S and C band because
at shorter wavelengths some ambiguities arise in the results due to the large baselines that
have been employed.

The first results are shown in Fi§.2 for both frequency bands. The baseline is
0.25° and the averaging is performed over 72 azimuth positions and 9 frequencies, thus
yielding 648 independent samples. These figures illustrate the height estimates for different
polarizations as a function of frequency.

Many comments can be derived from these plots. For example, it is interesting to
compare the optimum scattering mechanisms with those represented by the Pauli matrices.
Up to 2 GHz there is an equivalence between the positions of the scattering mechanisms
of the Pauli matrices and those obtained by the coherence optimization. The mechanism
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Fig. 6.2. Maize sample. Height of the scattering centers vs frequency. Paraméters:0.25°,
0. = 45°, Samples = 72 angles 9 frequencies. Topv—h basis. Center: Pauli matrices. Bottom:
optimum scattering mechanisms

with the highest coherence is equivalent to the dihedral type (HH-VV), which is located
close to the ground. Physically, it is produced by the stem-ground interaction which clearly
dominates for this target at low frequencies and with the current incidence angle. The sec-
ond optimum mechanism (related to the middle coherence) is located at almost the same
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height as the cross-polar scattering. Finally the optimum mechanism with lower coherence
is associated with the direct return (HH+VV) from the scatterers.

For frequencies higher than 3 GHz the optimum scattering mechanisms change their
relative positions. For example, from 3 to 3.5 GHz the second and third mechanisms swap
(the third goes to the lowest position, and the second to the highest). Moreover, from 3.5 GHz
the first and second mechanisms are almost coincident in height, while the third remains
under both of them. These changes in the optimum scattering mechanisms will be present in
the rest of results too. This phenomenon constitutes a drawback of the mechanisms provided
by the coherence optimization method. This is not observed for the mechanisms derived on
the basis of their physical position in the sample.

It is important to highlight that for this sample the HH-VV response comes from the
lowest point for all frequencies, while HH+VV is always located at the highest position. The
separation between them is about 0.4 m. As was stated in the previous section, this estimate
can be converted to an absolute height by analyzing the position of the scattering centers as
a function of the physical dimensions and characteristics of the target, but this conversion is
out of the scope of this thesis.

With regard to the phase centers for thé basis, they are closer together than those
extracted from the Pauli matrices for all frequencies. This is because they are physically not
well separate in the vegetation volume of maize. For example, the HH return comes not only
from the ground-stem interaction, but also from all the parts of the stems. Consequently, this
choice of basis does not seem optimum for maize crops monitoring.

According to the obtained results, a hypothetical system for remotely controlling the
growth of maize crops may be designed. The working frequency can be L, S or C band, since
the estimates behave equally for all this range. The incidence angle is preferred &ound
because (although not demonstrated in these indoor experiments) at steeper angles the direct
return from the ground may dominate and mask the other backscattered fields, and from
gentler angles all scattering centers would approach one to each other because the return
is mostly dominated by the direct response of the above-ground volume. Finally, the best
processing should be based on the retrieval of the height centers of the HH+VV and HH-VV
channels.

Note that the results shown in the left and right columns in Big.present some
discrepancies in their common band (2.4-3.8 GHz). They may be due to the change in
the measurement system between both experiments, since the antennas are different as was
explained in Chapte#. Nevertheless, the conclusions about the behavior of the estimates
are perfectly valid for both cases, as well as the best performance of the choice of HH+VV
and HH-VV as the ideal channels for an inversion algorithm. The system performance
only should be taken into account when converting those estimates into absolute heights (by
means of scattering models).

The uncertainty of the estimates is also analyzed here. Any interferometric phase can
be studied as a random variable. The first-order statistics of the interferometric phase has
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Fig. 6.3. Maize sample. Mean coherence for the scattering mechanisms vs frequency (high band).
ParametersB = 0.25°, . = 45°, Samples = 72 angles 9 frequencies. Top leftv—h basis. Top
right: Pauli matrices. Bottom: optimum scattering mechanisms

been widely described in the literature, and an explicit expression for its probability density
function (PDF) has been also provideéd’B 162, 157. The standard deviation of the phase
decreases as the coherence increases, but even for high coherences the standard deviation
is rather large. For example, for = 0.9, the standard deviation is, ~ 40°. Since our

height estimates are based on the interferometric phase, the phase estimation process is an
important issue. It has been demonstrated that the standard deviation of the phase estimation
can be drastically reduced by introducingnailti-look procedure. This method consists in
averaging the final interferogram over a number of independent interferograms of the same
scene. In practice, it can be performed by averaging over some pixels of the scene if it is
homogeneous or if a loss of spatial resolution is not a constraint. In the EMSL configuration

it is possible to average the interferogram over independent samples. An expression of the
resulting interferometric phase is:

L
¢ = arg (Z sisé*) , (6.34)
i=1

whereL is the number of samples used in the multi-look estimate.
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Fig. 6.4. Mean coherence vs frequency according to (6.35). Parameees: 0.25°, 6. = 45°,
Az=1.8m

Table 6.1. Mean coherences of the interferograms at 5 GHz/and 0.25°

Optimum v = 0.7974 v9 = 0.7657 ~v3 = 0.7384
v—h basis Ypp = 0.7193 Yoo = 0.7380 Yoo = 0.7918
Pauli matrices vpp140 = 0.7374  Yap_vw = 0.7531  ~yp,, = 0.7918

With this technique, the PDF of the phase estimate changes, and the standard devi-
ation decreases drastically {4, 152, 161]. For example, a coherence of 0.9 now yields a
standard deviation af0° with only L. = 8, and even less for higher values lof

The influence of this uncertainty in our height estimates is illustrated in the following.
First of all, the mean coherence for each scattering mechanism is plotted as a function of the
frequency in Fig6.3. The coherence follow a decreasing trend when the frequency increases.
This function has been studied in different references by varying the frequency, the baseline
or the total height of the target. In our case, a suitable expressia@is]75 176:

A6

~v = sinc <2i - — Az) , (6.35)
¢ sind,

wheresinc(z) = sin(7wz)/(rz) and Az is the total height of the scattering volume. For the

current parameters the resulting coherence is plotted in6Hgwhere Az corresponds to

the total maize height: 1.8 m. There is a full agreement with the results o6 Eg.

A study of the estimate variance follows for a single frequency. The numerical values
of the mean coherences at 5 GHz are displayed in Ta&lileWith those coherence values,
the first-order standard deviation of the individual phase estimates of each interferogram
is worse tharb0°. The translation of this deviation into height values for this baseline is
about 70-80 cm, which is of the same order of the expected height. Therefore, a multi-look
procedure must be carried out to improve the estimation process. The standard deviations
(in height units) for the above cases are shown in Taél#ldor L = 1 (single-look),L = 4
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Table 6.2. Standard deviations of the individual height estimates (in meters) for various valiles of
Parametersf =5 GHz,B = 0.25°

L=1 (single-look)

Optimum o1 =0.73 o9 = 0.79 o3 = 0.81
v—h basis onpp, = 0.80 Opw = 0.79 Oho = 0.75
Pauli matrices o1 = 0.81  opp—ypy = 0.84  opy = 0.75

L=4

Optimum o1 =0.24 o9 = 0.30 o3 = 0.40
v—h basis onp = 0.37 Oy = 0.42 Oho = 0.25
Pauli matrices opp40p = 0.40  opp—ypy = 0.41  opy = 0.25

L=24
Optimum o1 = 0.08 o9 = 0.09 o3 =0.12
v—h basis opp = 0.12 ow = 0.11 opy = 0.10

Pauli matrices o4y = 0.12  opp—ypy = 0.11 o3, = 0.10

andL = 24. The improvement obtained by the multi-look technique in the final estimates is
quite evident.

We are interested not only in the accuracy of the height estimates for each interfer-
ogram. Since the retrieval algorithm estimates the height as the relative difference between
interferograms, it is important to analyze the variance of the height differences. In first ap-
proximation theerror propagation formulacan be applied to this study. The height estimate
h is the difference between two random variablesand »,, that correspond to the heights
derived from the interferograms computed for two different scattering mechantsamsly,.

Both random variables are characterized by a mean and a standard deviation:

he = hy £ Ah, (6.36)
h, = h, + Ah,,. (6.37)

The final estimate is a function of two variablés,andh,, that can be written as:

h=f(hy, hy) = ha — hy. (6.38)

The error propagation formulastates that the error of the estimate must satisfy the
following expression:

2 2
< 0} 2 0} 2 [AR2 2 _
Ah < \/( hx) Ah? + ( hy> Ah? Ahz + AhZ (6.39)
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Table 6.3. Standard deviations of the final height estimates (in meters). Paramgters: GHz,
B=025°L=24

Optimum 012 = 0.12 01,3 = 0.13 023 = 0.16
v—h basis Ohhoyv = 0.15 Ohh,hv = 0.12 Oyv,hv = 0.12
Pauli matrices opp4v0,hh—vo = 0.14  Ohhtvvho = 012 Opp—pp po = 0.17

The standard deviations of the final height estimatesifee 24 are shown in Ta-
ble 6.3. Leaving apart the small inaccuracies of these numerical estimates due to the small
number of samples, the agreement with expectations is evident. Note that a theoretical
derivation of the PDF of these final estimates is out of the scope of the present thesis.

The main conclusion that can be drawn from this analysis is that the choice of the
optimum scattering mechanisms yielded by the coherence optimization does not improve
significantly the quality of the height estimations with respect to the other mechanisms se-
lected on the basis of a priori knowledge. The similarity of the coherences in all three
cases is evident. As a result, as far as the height estimation is concerned, there is no degra-
dation in the results obtained by using Pauli matrices-agr basis when compared to the
optimum scattering mechanisms.

The dependence on the baseline has not been widely analyzed in this thesis due to
the limited number of experiments. However, the same computations of Rigave been
repeated in Fig6.5 for a baseline ofB = 0.5°. In general, the estimates have the same
behavior and the final results are almost the same. There are only some significant changes
for frequencies greater than 4.5 GHz. Therefore, in principle the baseline is not a critical
parameter for this application. This conclusion should be confirmed by a further and deeper
analysis of all the parameters involved in the procedure.

We have explained above that the final height estimates are obtained as the maximum
differences between interferograms. These final results as a function of frequency are plotted
in Fig. 6.6. The estimates of the optimum scattering mechanisms present a quite complicated
dependence on the working frequency. An inspection of the estimation procedure explains
the reasons for these varying estimates. Any change in the estimates is produced by: 1) a
displacement (absolute or relative to the other mechanisms) of the phase center of a mecha-
nism when the frequency changes, and/or 2) an interchange in the physical meaning of the
scattering mechanism that can produce a swap in their relative order. For example, there is a
band around 3—4 GHz where the estimates change their trend for both baselines. This phe-
nomenon is caused by a change in the order of the optimum scattering mechanisms, whereas
the rest of fluctuations are due to variations in the height level of the individual mechanisms.
Again, this figure is a confirmation that the estimates obtained with the Pauli spin matrices
are more stable than those retrieved with the coherence optimization.

The second target to be measured was the rice sample. The number of independent
samples obtained by azimuth rotation is low (in this case, there are only three samples). Nine
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Fig. 6.5. Maize sample. Height of the scattering centers vs frequency. Paramétets:0.5°,
0. = 45°, Samples = 72 angles 9 frequencies. Topv—h basis. Center: Pauli matrices. Bottom:
optimum scattering mechanisms

frequency sub-bands were used in the averaging, thus leading to a total of 27 independent
samples for each estimate. Again, two frequency bands were used in the experiment: 0.3
to 4.3 GHz and 1.5 to 9.5 GHz, the baselines beihgn the first case an@.5° in the
second. The bandwidth employed in the image reconstruction was 80 MHz. This sample is
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Fig. 6.6. Maize sample. Maximum height difference between scattering centers vs frequency. Pa-
rametersy,. = 45°, Samples = 72 angles 9 frequencies.

shorter than the maize (only 60 cm high), so it is not expected to present ambiguities at high
frequencies. Figs.7 shows the estimates for L, S, C and X band.

At first sight, the estimates behave more irregularly than for the maize sample. In
fact, only for frequencies higher than 4 GHz the separation between scattering mechanisms
follow the expected distribution (i.e. HH-VV at the bottom and HH+VV at the top). At
low frequencies there exist many fluctuations on the estimates. This phenomenon may be
produced by different causes. For example, at low frequencies all the backscatter return is
dominated by the ground-stem interaction, which is many dB’s above the scattering by the
rest of the plant components. Moreover, the physical structure of the plants is more random
than the maize. Finally, an additional source of variance in all estimates (not only at low
frequencies) is the low number of independent samples used in the averaging.

As in the maize experiment, the optimum scattering mechanisms vary significantly
their relative position inside the volume when the frequency changes. For instance, from 4
to 5 GHz the first is at the bottom and the third at the top, whereas from 6.5 to 7.5 GHz they
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Fig. 6.7. Rice sample. Height of the scattering centers vs frequency. Parantgterst5°, Samples
= 3 anglesx 9 frequencies. Topv—h basis. Center: Pauli matrices. Bottom: optimum scattering
mechanisms. Left: Low band witB = 1°. Right: High band withB = 0.5°

are swapped. There are also bands with all three optimum mechanisms centered at the same
height. Therefore, their choice is not a good starting point for the height estimation. In con-
trast, the mechanisms associated with the Pauli matrices exhibit a fairly uniform separation
of about 20 cm independently from the frequency. Regarding#hebasis, the estimates
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Fig. 6.8. Rice sample. Maximum height difference between scattering centers vs frequency. Param-
eters:0. = 45°, Samples = 3 angles 9 frequencies. Left: Low band witB = 1°. Right: High
band withB = 0.5°

are not as clearly separate as the Pauli matrices ones. These phenomena are also evident in
Fig. 6.8, where the maximum differences between mechanisms are depicted.

As a conclusion, a monitoring system may be designed for remote control of rice
crops as well. In this case, however, the working frequency should be at C or X band, since
the backscatter from the upper part of the plants is masked by the ground-stem interaction at
lower frequencies. The same criteria as the maize can be stated for the incidence angle.

The last measurements were performed on the cluster of small fir trees for 1 to
10 GHz, with an incidence angle d6°. The baseline in this case (s5°. A total of 54
independent samples were used for each estimate, obtained from 6 samples in azimuth and
9 sub-bands. The bandwidth employed in the images generation was 40 MHz. The resulting
estimates are shown in Fi§.9 as a function of the frequency for L, S and C band.

For this target the phase centers corresponding to all scattering mechanisms are al-
ways very close together. A justification to this behavior can be found in the physical struc-
ture of the target. As was explained in previous chapters, this is a very random volume with
no dominant orientation of its components. Moreover, it exhibits similar scattering proper-
ties for all microwave frequencies due to its architecture, which is formed by particles with
the same shape and different sizes, thus producing the same dominating scattering at dif-
ferent wavelengths. Finally, this homogeneity is observed over the whole target, thus not
presenting a clear distribution of different behaviors as a function of height. As a result, all
polarization channels (HH, VV and HV) behave in similar manner and it is impossible to
find different phase centers for each of them consistently. The maximum height differences
are also shown in Figs.9. There is only a meaningful estimate for low frequencies as a
result of the difference between HH and VV or HV.

This lack of applicability of polarimetry is expected wherever there is not a signif-
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icant orientation of the particles in a target, because, by definition, polarimetry deals with
rotations, angles or orientations. In previous examples, with the maize and rice samples, the
ground was a key feature, since it changes importantly the polarization of the wave, thus
introducing orientation information in the scattered field. In our sample with fir trees there is
almost no return from the ground or the ground-trunk interaction (see Chgptdowever,

in natural forests this return is commonly present at low frequencies (L band), and the height
can be retrieved by means of polarimetric interferomet&/].

Finally, as suggested in a recent publicatidiiq], for volumes with a random distri-
bution of particles (without any preferred orientation) polarimetry has little contribution in
this estimation method. This is also true because of the low return from the ground. Instead,
for a very oriented volume as maize this method is expected to work better. Note that a first
estimation of a parameter related to the differential extinction coefficient between orthogonal
polarizations (which is fundamental for the success of this technitjti§)[was presented in
Chapterd.
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6.3 Conclusions

Some comments about the performance of this method as experimented at EMSL are dis-
cussed here. In the first place, various approaches for making use of polarimetry from com-
puting simultaneous interferograms have been presented. All of them consist in projecting
the polarimetric information of both images onto scattering mechanisms, thus retrieving the
phase center associated with each mechanism. In order to perform this projection, a vector
formulation of the interferogram formation is adopté&d][ The selection of the scattering
mechanisms may be based on two different criteria. The first option assunaeprani
knowledge of the scene for choosing those scattering mechanisms that correspond to differ-
ent vegetation components. The second option derives from the optimization of the interfer-
ometric coherence, which can be accomplished by properly choosing scattering mechanisms
in both images. The formalization of that optimization leads to an eigenvalue problem which
in turn yields a target decomposition into three pairs of scattering mechanisms. The scatter-
ing mechanisms associated with the higher eigenvalue produce the highest coherence, and
the three pairs exhibit statistical independence between them. Both choices have been com-
pared in this chapter.

In general, the approach based on the coherence optimization presents an important
drawback: there is not information about the location of the scattering mechanisms inside the
vegetation volume. It is possible to find all three mechanisms on the same position or, when
they are physically separate, they can interchange their relative positions when the frequency
varies. Instead, the approach based on a previous decision about the scattering mechanisms
is better justified from the physical point of view and, moreover, leads to better results. Ac-
cording to the experiments presented in this chapter, the best choice consists of the first two
Pauli spin matrices, which represent surface or direct scattering and dihedral scattering. The
implementation is performed by calculating the interferograms of the HH+VV and HH-VV
polarizations, and the height estimate is the difference between them. The HH+VV interfer-
ogram represents the effective phase center of the direct scattering from the above-ground
volume, whereas the HH-VV interferogram corresponds to the ground-trunk interaction. Fi-
nally, although not presented here, a conversion of the retrieved height to an absolute value
may be carried out on the basis of a scattering model of the vegetation target.

Measurements were performed for a maize sample, a rice sample and a cluster of
small fir trees. For both crop samples the estimates behave regularly with frequency. The
maize sample yielded consistent estimates from L to C band, whereas the results for the rice
were only valid for C and X band. On the other hand, the algorithm failed for the cluster of
trees. This is due to the random structure of the sample, without any preferred orientation
and without any backscatter return from the ground at the chosen incidence angles. As a
result, the method cannot distinguish between different heights (phase centers) as a function
of the polarization.

The experiments conducted so far at EMSL about the application of polarimetric
interferometry to the extraction of vegetation height lead to an important conclusion: in
laboratory conditions, the inversion of a parameter directly related to the absolute vegeta-
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tion height is possible by simultaneously computing interferograms for several polarization
states. The generalization of this approach to conventional air- or spaceborne INSAR systems
is discussed in the global conclusions of the thesis (Ch&pter
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CHAPTERY

3-D Radar Imaging by Using Range
Migration Techniques

HE identification of scattering centers inside vegetation volume and the quantification
of their polarimetric contribution by means of decomposition techniques constitute a
new analysis method presented in ChapterThe application of this technique requires
the formation of high resolution radar images of the vegetation samples. These images can
be generated by a variety of focusing algorithms, as was explained in S@chom\ 2-
D reflectivity image can be formed by synthesizing an 1-D aperture with a wide-band radar.
Accordingly, a 3-D reflectivity image is formed by synthesizing a 2-D aperture. For example,
in an anechoic chamber the typical geometries of the 2-D apertures that can be synthesized
are planar, spherical and cylindrical.

However, not all focusing algorithms match the specific configuration of the EMSL.
The most restricting property of the radar measurements at EMSL is the near-field situation
of the antennas with respect to the target. When the radar is in the far-field zone of the
target, the illuminating wavefront can be considered to be plane and, hence, the focusing
procedure reduces to an interpolation plus a 3-D inverse discrete Fourier tran&fijm [
Instead, if the radar is located in the near-field region, the planar wavefront assumption is no
longer valid, and a straightforward fast Fourier processing cannot be used in the image re-
construction. Near-field ISAR imaging by a direct Fourier inversion yields images which are
progressively unfocused at points with increasing distances from the center of roi&thn [
or even images with misplaced scattering centers.

Three types of conventional imaging algorithms, commonly used in the SAR commu-
nity, were cited in Sectio.5. Polar Format Algorithm (PFA), Range Migration Algorithm
(RMA) and Chirp Scaling Algorithm (CSA). These methods include additional operations in
the focusing procedure, like complex products and interpolations, but all three are still quite
efficient because their implementation is mostly based on FFT’s, thus speeding up the com-
putation time. Nevertheless, their applicability to near-field ISAR configurations is limited
by the correction of the wavefront curvature, that is accounted for in a exact manner only
by the RMA. Consequently, the RMA has been chosen for the construction of an efficient
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near-field 3-D ISAR algorithm adapted to the EMSL.

A 3-D version of the RMA algorithm is formulated for the first time in this thesis.
Its derivation is described in two steps. Firstly, the 2-D synthetic aperture is assumed to be
planar. As an input, the algorithm requires frequency domain backscatter data which can
be acquired using a stepped frequency radar. Thus, resolution in the vertical and horizontal
cross-range directions is given by the dimensions of the synthetic aperture, whereas resolu-
tion in range is provided by the synthesized frequency bandwidth. Frequency domain data
are preferred because the RMA algorithm works in the frequency-wavenumber domain. Note
that the focusing of time domain data acquired with a pulsed system would become straight-
forward by simply applying a Fourier transform. Secondly, an extension of the algorithm
to cylindrical and spherical scanning geometries (the usual ones at EMSL) will be formu-
lated and implemented by means of spectral translations to reduce the problem to the planar
aperture case. Note again that the measurements are supposed to be fully controlled, and
therefore factors such as irregular sample spacing, platform position errors and mitigation of
RFI have not been investigated.

This chapter is organized as follows. Sectibfi presents the formulation of the 3-D
RMA, which has been derived by using the method of stationary phase (M38)s sug-
gested in 129 for the 2-D RMA. Two alternative interpretations of the algorithm are shown
to facilitate its understanding. The implementation of the method, divided into different data
processing steps, is described in Secfiod Some practical aspects on the performance
of the algorithm, the required sampling criteria and the resulting resolutions, are also ex-
plained in this section. Section3illustrates numerical simulations that have been carried
out for testing the algorithm with the assumption of a planar synthetic aperture. Experimen-
tal results showing the validity of this imaging method are provided in Segti@nNext,
Section7.4 deals with the extension of the 3-D RMA to cylindrical and spherical scanning
geometries. This extension is also illustrated with numerical simulations and experimental
results. Finally, some conclusions are summarized in Sect®n

7.1 Formulation of the 3-D RMA

Let us consider the measurement set-up shown in#Fig.A stepped frequency radar illu-
minates a target with a CW of frequeng¢y The antenna positions afe,, y., z,), which
synthesize a rectangular aperture on a plane parallel t&thet a distance) = y,. The
measurement points form a rectangular grid with spacikgsand Az, along the horizon-

tal and vertical cross-range directions, respectively. At each antenna position the synthesized
frequency bandwidth i$3. Thus, the acquired backscatter ddta,, f, z,) are function of

two spatial coordinates and the working frequency. The frequency variable is directly re-
lated with the wavenumber, that for radar data is defineld. as 47 f /c. Consequently, the
measurement data can also be denotetas k,, z,).

Assuming that there is a point scatterer locateay, ) with reflectivity s(z, y, z),
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Fig. 7.1. Measurement and imaging geometry

then the measured backscatter is:
d(xe, kry za) = s(x,y, z) exp [jkya] exp[—jk-R], (7.2)
whereR is the range to the point scatterer, i.e.

R=+/(z =)+ (y — ya)? + (2 — 2)% (7.2)

The first exponentialin (7.1) establishes a reference plane at the center of the scene
which isy, away from the aperture. In the 2-D RMA this reference was a line parallel to
the linear aperture. The second exponential simply accounts for the phase history associated
with the point scatterer. Note that, for the sake of simplicity, the losses due to the free-space
propagation and the antenna pattern are not considered here.

If the target is distributed, the acquired backscattered can be regarded as the integra-
tion of all contributions from the target volume:

oastrz) = [[[ste.0.2) vl ek drdy iz (1.3
1%

whereV denotes the volume occupied by the target, and linearity has been assumed as usual.

A focused image can be reconstructed by performing a convolution of the data with a
focusing function, which in turn is the complex conjugate of the exponential terms. The 3-D
radar reflectivity map associated with a distributed target can be expressed as:

s(0.02) = [[[ dloakesz) el x

Ak

€xp |;7kr\/<x - xa)Q + (y - ya)2 + (Z - Zzz>2 dxa dza dkra (74)

1The exponential function is denoted asp|z|, instead ofe?, in some equations of this chapter. This
notation has been employed to make the argument more readable
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whereA denotes the surface of the synthesized aperture. Equatircan be reformulated
in order to show that the focusing algorithm can be simply described by means of a 2-D
convolution and a frequency integration:

s(o:2) = [ expl-shu { [[ bz
" A

exp [jkr\/(x —2,)2 4+ (Y —ya)? + (2 — zaﬂ dz, dza} dk,. (7.5)

The 2-D convolution (in braces) on the aperture coordinétgs:,) could be com-
puted in the Fourier domain as a complex product. This alternative calculus is denoted as:

/ Dk, ks k) Bk, yor k) exp (ko + jkez] dho d.. (7.6)

whereD(k,, k., k) is the 2-D horizontal/vertical cross-range Fourier transform (FT) of the
frequency domain backscatter data, @&, y,, k.) is the following 2-D FT:

E(ky, Yo, k) = // exp [jkr\/fc2 + (Y —va)? + 22] exp [—jkx — jky2] dox dz. (7.7)

In order to apply 7.6), the FT described in7(7) must be known. This kind of in-
tegrals, under certain conditions, can be evaluated analytically by using the Method of Sta-
tionary Phase (MSP)L[/g. The MSP states that the main contribution to the integral comes
from points with stationary phase (nulls of the phase derivative), and gives an asymptotic
expansion for the integral. The evaluation of the 2-D integraVii)(by means of the MSP
results in (see Sectionl.2:

j2mk,

ky
wherek? = lf;f - k2 — _kg. _Replacing the 2-D FT by its asymptotic expansionrb), the
3-D reflectivity image is given by:

2
(r,y,2 /// (ky, Ky k) J ;kr exp [—jk,ya] X
y

exp [jk.x + jk.z + jky(ye — v)] dk, dk, dk,. (7.9)

E(ky, Yo, k) =~

exp [Jky (Yo — V)], (7.8)

Note that the last exponential term has the form of the Fourier kernel in a 3-D Inverse
FFT (IFFT). However, prior to this 3-D IFFT, the wavenumber domain backscatter data need
to be resampled uniformly ik, (i.e., a 1-D interpolation known as Stolt interpolatidrsf]).
Then, by substituting the frequency wavenumber vari@blby £, the reflectivity image
takes the form:

j2m
s(x,y', 2) // D(ky, ky, k) k—exp[—jkTya] X

exp [1kyya| exp [k + jk.z + jkyy'] dk, dk, dk., (7.10)
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where the ground-range variable has been reversed’ard—y. The amplitude term has

been modified due to the change of variables & k,). Eq. (/.10 indicates that the re-
flectivity image can be simply obtained through a 3-D IFFT of the product of the resampled
wavenumber domain backscatter data by a complex exponential (also known as matched
filter).

7.1.1 An Alternative Interpretation of the RMA

The starting point of the previous derivation of the 3-D RMA was the focusing function
that is needed for reconstructing the image, as it is showi.#).( However, there is an

alternative viewpoint for justifying this method. The idea is that if we had the reflectivity
image in the Fourier domain, we could reduce the whole processing to a simple 3-D IFFT:

s(z,y,z) = /// S(ky, ky, k) exp [Jkox + jkyy + jk.2] dk, dk, dk.. (7.11)

Consequently, the objective is to reconstruct the reflectivity image by using a 3-D
IFFT in the last step. This is equivalent to finding the relationship betwéen k,, k) and
D(ky, ky, k).

Firstly, we know thats(x, y, z) andS(k,, k,, k.) must form a Fourier transform pair,
thus:

S(ky, ky, k) /// z,Y, 2) exp [—jkyx — jkyy — jk.z| dx dy dz, (7.12)

whereV” denotes the volume occupied by the target.

The frequency domain backscatter ddta,, k., z,) can be regarded as the integral
of the spatial distribution of reflectivity(z, y, z), weighted by an exponential phase term:

aaskza) = [ [ [ stw.2) o ) o dy (7.13)
1%

whereR is the range to the point &t, y, ), i.e.

R = \/(:’U - xa)2 + (y - ya)2 + (Z - 20)2‘ (714)

If one performs performs a cross-range 2-D FT on the acquired data over the aperture
A, the result can be expressed as:

D(ky, ky k) = // d(xa, kry 2a) exp[—jk.x — jk.2] dz, dz,. (7.15)
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By substituting 7.13 into (7.15 and evaluating the resulting surface integral by
means of the MSP, the final resui:

D(ky, k. k) = ///s(ac,y,z) exp [—jk,x — jkyy — jk.z] dzv dy dz, (7.16)
v

which has the same form ag.{2. This shows that the 3-D FFT of the reflectivity image,
S(ky, ky, k), is directly related to the 2-D FFT of the measured dag;,, k., k.). A total
identity between both is achieved by including the matched filter and the Stolt transformation
(ky — ky).

7.1.2 Application of the Stationary Phase Method to the RMA
Derivation

The 2-D Fourier Transform in/(7) can be evaluated asymptotically by using the Method of
Stationary Phase (MSP)T8. This method provides an analytical solution to integrals of
the form

N(k) = / / F(,y) exp [ku(z, y)] de dy, (7.17)

where R is a region in theXY plane, andu(x,y) is a function assumed to be twice-
continuously differentiable ilR. The asymptotic evaluation a¥ (k) for large & can be
obtained by looking for the zeros of the first derivative of the argument of the exponential
term. The major contribution to the integral in{7) comes from a small neighborhood near
the points where the two first derivativesgfr, y) vanish. These points are known as points
of stationary phase.

In the RMA, the objective is to evaluate the integral

E(ky, k) = // exp [jkr\/$2 +(y —ya)? + 22| exp|—jkex — jk.2] dv dz.  (7.18)

The phase of the exponential term is given by

O(z,2) = ku(x,z) = kR — kyo — k.2 (7.19)
R= 22+ (y — ya)? + 2% (7.20)

If there is only one point of stationary phase, the resulting asymptotic expansion of
E(ky k) is
j2m

V (I)xacq)zz - @%Z

2The matched filter term has been omitted in the final expression

E(km7kz> & exp [jq)(‘rmZO)] ) (721)
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where®,,, ¢., and ®,, denote the second partial derivativesdgfr, z) evaluated at the
stationary point. The stationary poifity, zo) is the point where the phadgz, z) takes an
extreme value, i.e.,

od

— =0 7.22
), (7.22)

Z0,20)

P

8— =0 (7.23)

0z ( )

0,20

and, at the same time, it is assumed that

d,. D, — @iz #0 O, #0. (7.24)

The first derivatives of the phase function are:

0P k,x
D,(x,2) = — = —k, 7.25
(v,2) = 5 = —ka + 1 (7.25)
0P k,z
O, (r,2) = — =—k, . 7.26
There is only one point were both first derivatives vanish simultaneously:
o kx(ya - y)
o = \/m (7.27)
o kz(ya - y)
20 = N et (7.28)
The second partial derivatives are:
0 ke [2* + (y — ya)?]
ou(2,2) = 55 = I (7.29)
0k [2* + (y — ya)’]
O, (z,2) = 97 = 7 (7.30)
0% kyxz
q)rz(‘/EJZ) - a.r@z - R3 ) (731)
which evaluated at the stationary point), z) yield,
(K — R2)RE —FE — R
(@0, %) k2 (Y — ya) (7:32)
(K2 — R)VRE—FE—F2
N TORES (733
kok,\/k2 — k2 — k2
cbxz (Z'(), Zo) = u Z z . (734)

kf (y - ya)
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Moreover, the functio®(z, y) evaluated at the stationary point is:

O(xg, 20) = k2 — k2 — k2 (Yo — ). (7.35)

Finally, substituting 7.327.35 into (7.21), the resulting expression for the 2-D
Fourier transform of{.18) is

P27 =90 o by )] (7.36)

Y

E(ky, k) ~

wherek, = \/k? — k2 — k2.

Note that the facto(y — y,) in (7.36) cannot be applied in practice because the
ground-range variablgis not defined in the wavenumber domain. This is an amplitude fac-
tor and as such has a negligible effect on the quality of the final image. Thus, the asymptotic
expansion to be used in the RMA becomes:

exp [7ky (Yo — v)] - (7.37)

7.2 Description of the Algorithm

7.2.1 Practical Implementation

This section deals with the practical implementation of the 3-D RMA. Froi(, the image
reconstruction process can be naturally split into four sequential steps (s€exigamely:

a 2-D cross-range FFT, matched filtering, Stolt interpolation, and a 3-D IFFT. The first and
the last steps are obvious and will not be discussed here. However, the matched filter and the
Stolt interpolation deserve special treatment.

The matched filter is necessary to introduce a motion compensation to the wavenum-
ber domain backscatter data. This motion compensation corrects the wavefront curvature of
all scatterers at the same ground range as the scene center (i.e., the origin of the coordinates
system). In the successive step, the residual range curvature of all scatterers will be removed.
The phase associated with the matched filter is space-invariant and depends only on the range
to the scene centey,, the frequency and the cross-range wavenumbers. It is given by

e (ky, kry k) = —kr Yo + by Yo = —kr Yo + k2 — k2 — k2 y,, (7.38)

where the identity
ky = \/k* — k2 — k2 (7.39)

is known as the Stolt transformation.
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[Frequency Domain Data Set}
i G d(xa,Kr,za)

[ 2-D Cross-Range FFT ]

l e D(KX,KTLKZ)
Matched Filter
exp[-j Kr ya +j Ky ya]
l e S(KX,KT,KZ)
Stolt Interpolation
Kr— Ky
= S(Kx,Ky,Kz)

3-D IFFT

[ 3-D Reflectivity Image J = s(X,Y,2)

Fig. 7.2. Block diagram of the 3-D RMA

The third step in the 3-D RMA is the Stolt interpolation. This interpolation compen-
sates the range curvature of all scatterers by an appropriate warping of the wavenumber do-
main backscatter data. After the matched filter, the transformed data continue being equally
spaced in frequency, and hence in thevariable. In order to prepare the data for the last 3-D
Inverse FT, the next step consists of a change of variables defined by the Stolt transforma-
tion, which can be implemented as a 1-D interpolation. As a result, the wavenumber domain
backscatter data will be uniformly sampled in thedomain. In the present implementation
of the algorithm, the sampling frequency is increased to be highly above the Nyquist limit,
then a Lagrange interpolation preceded by a frequency downconversion is applied.

Note that, in 7.39, k, must be real and therefore the region in the wavenumber
domain where the asymptotic expansion of the MSP is valid reduces to,

k2 > K2+ k2 (7.40)

The field modes which satisfy this inequality are the so-called propagating modes, whereas
those which do not propagate are the evanescent modes. The amplitude of the evanescent
modes is affected by an exponential factor which rapidly vanishes with an increasing distance
to the aperturdy, — y). In the formulation presented here, it is assumed tiAat( is
satisfied. In practice, the data points in the wavenumber domain outside the region defined
by (7.40 will be discarded by applying a mask prior to the matched filter.

Once the Stolt interpolation is performed, the wavenumber domain backscatter data
have to be multiplied by the amplitude terms due to change of variable and the asymptotic
expansion of {.10. Then, the 3-D reflectivity image is obtained by simply applying a 3-D
IFFT.
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7.2.2 Resolutions

The resolutions in the resulting 3-D reflectivity image depend on the frequency bandwidth,
the center frequency and the dimensions of the synthetic aperture. The ground-range resolu-
tion is usually expressed as,

by 5B (7.41)
whereB is the frequency bandwidth. The horizontal and vertical cross-range resolutions are,
AcYa CYa
~ = 7.42
*~ 2L, 2f.L, (7.42)
A
5, ~ Lcba _ a (7.43)

T2l 2fL)

whereL, and L, are the lengths of the 2-D synthetic aperture, apes the wavelength at
the center frequency..

In practice, the frequency domain backscatter data are windowed to lower the side-
lobes in the imagery, and as a result, the final resolutions become slightly poorer than those
given by the above formulas.

7.2.3 Sampling Criteria

Assuming that the target is confined within a rectangular box of dimengigns D, x D,
centered at the origin of the coordinates, the required sampling steps in the measurement to
satisfy the Nyquist criterion are given by

C

Ap < — 7.44
1S9, (7.44)

A, < a 7.4
Fa 2 L,+ D, (7.45)

A, < a 7.46
a 2 Lz+DZ ( )

where,.,;, is the wavelength at the maximum working frequency.

The sampling intervals given by (45 and (7.46) are the usual ones in strip map SAR.
The measurement points on the aperture require certain spacing in order to sample adequately
the phase history associated with all the scatterers after the matched filter. The sampling
frequencies in a strip map SAR are much higher than those in a spotlight configuration. Note
that in a spotlight SAR the maximum cross-range spacing only depends on the target size and
the distance to the aperture, but not on the aperture size as in a strip map SAR. Consequently
strip map SAR measurements have associated larger data volumes and longer measurement
times.
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[Frequency Domain Data Set}

X )=——— exp(j Kr [ya-Ra])

Resampling

X )=—— exp(j Kr [ya-Ra])

3-D RMA

Fig. 7.3. Pre-processing of data sampled at spotlight rate

Running a strip map SAR measurement at spotlight SAR sampling frequency intro-
duces aliasing in the acquired data set. However, the origin of the aliasing is known and can
be eliminated by establishing a deterministic phase correction term. This correction term can
be expressed as:

HF (2, ky, 2a) = oXp [jk;r(ya — Ryt zg)] . (7.47)

After applying the correction, the aliasing has been eliminated, and the sampling rate
can be increased in order to satis#f45 and (7.46. Finally, a second phase correction,
complex conjugate of the first, is applied to restore the original phase reference in the data.
The main advantage of this procedure is the reduction of both data volume and measurement
time. From the viewpoint of the RMA, this pre-processing is completely transparent and
does not introduce any side effect. Note that the 3-D RMA maintains the same requirements
in terms of internal memory and computational load. The flowchart associated with this pre-
processing is shown in Fig.3. The resulting cross-range sampling intervals (i.e., those used
in a spotlight SAR) are:

)\minya
A, < —————— 7.48
S 9 /D2 D (7.45)
A, < _ Amin¥a (7.49)

2,/DI+ D2

In [135 1364 an alternative technique to process strip map data at spotlight sampling
frequency is presented. This method, named Frequency domain Replication and Downsam-
pling (RMA-FReD) in [L3€], has been used with airborne data for 2-D images. With this
approach the blurred replicas due to the aliasing fall ideally out of the scene, and the final
image presents a slightly lower signal-to-background-ratio and a wider impulse response. If
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Fig. 7.4. Measurement set-up used in the numerical simulation with the 3-D array of 125 point
scatterers

this minor degradation in the image quality is accepted, one can use the RMA-FReD as a
guick-look processor. Note that, with the RMA-FReD, the data volume to be processed is by
far smaller than that in the conventional RMA. In the next section, the results obtained with
these two processors are compared.

7.3 Results

The high computational efficiency and accurate image reconstruction of the algorithm are
demonstrated both with numerical simulations and measurements using an outdoor linear
SAR system. The code of the algorithm has been implemented in C programming language.
The computer used to focus the data is a high performance Sun Ultra-Sparc workstation,
equipped with a 64 bit CPU and 128 MByte of RAM. What follows is the description of the
measurement set-ups and the results on simulated and real data sets.

7.3.1 Numerical Simulations

Fig. 7.4shows a sketch of the target used in the first numerical simulation. The target consists
of a 3-D array ofs x 5 x 5 point scatterers uniformly distributed within a box of side 1 m.
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Fig. 7.5. Projections of the 3-D SAR image onto the XY, XZ and YZ planes. Simulation of 125 point
scatterers. Parameterg;, = L, = L, = 2m, f = 2-6 GHz,§, = ¢, = J. = 3.75 cm,

Ay =100 MHz,A,, = A,, = 4 cm, Displayed dynamic range is 50 dB. (a) Original RMA (b)
RMA-FReD

All scatterers have the same RCS: 0 dBsm. A TX/RX antenna synthesizes a planar aperture
of 2 m x 2 m located ay, = 2 m from the target center. The number of measurement points

is 51, spaced 4 cm apart, both in the horizontal and vertical cross-range directions. These
sampling intervals have been selected according to the spotlight criterion. The resulting sam-
pling intervals without the proposed pre-processing would be 2 cm. The frequency ranges
from 2 to 6 GHz, sampling a total of 41 points with a step of 100 MHz. According to these
parameters the theoretical resolution is 3.75 cm along the three main axes.
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Two 3-D reflectivity images have been reconstructed using the RMA and the RMA-
FReD, respectively. The reflectivity images have been reconstructed in a cube of side 1.2 m,
with a total of 61 boxel in each dimension. Fig.5 shows the projection of the images
onto the three main planes. A Kaiser-Bessel=£ 2) window has been applied along all
dimensions of the frequency domain data det9. The dynamic range displayed in the
image is 50 dB. Both results show a slight dependence on the ground-range coorginate (
This effect is common in near-field measurements since the algorithm does not focus with
the same resolution close and distant points. For close points the effective aperture angle
is larger than for distant ones, thus providing better resolutions in the near range area of
the target. Anyway, the quality of the whole reconstructed image is quite satisfactory and,
moreover, the computation time is short. In the RMA case the processing time was 3 min and
40 secs, requiring about 13 MB of RAM. The image obtained with the RMA-FReD processor
exhibits some inaccuracies with reflectivity values bele®0 dBsm. These imperfections
are presentin the near range zone because this area introduces the highest spatial frequencies,
which in turn were degraded by aliasing. However, with this processor, the processing time
was only 1 min, requiring 3 MB of RAM.

The second simulation is intended to estimate the dynamic range of the 3-D RMA
processor. The target is similar to that used in the previous simulation. It consists of three
parallel planes spaced 40 cm apart, where 9 scatterers have been uniformly distributed as
shown in Fig.7.6a. The reflectivities of the point scatterers range from 0 to -80 dBsm. The
measurement set-up is identical to that of the first simulation. The reflectivity image has
been reconstructed using the 3-D RMA. Figab shows the slice corresponding to a vertical
plane parallel to the aperture t= 0. The dynamic range of this image is 100 dB. As in
the previous results, a Kaiser-Bessel-£ 2) window has been applied. It is seen that the
dynamic range of the imaging algorithm is better that 80 dB. In practice, the dynamic range
will be limited by the presence of noise in the system. Tablecompares the values of
reconstructed and actual reflectivities. The maximum error is in the order of 1.5 dB.

Table 7.1. Reflectivity values for the target in Fig. 7.6

Nominal (dBsm)| y=-0.4 y=0 y=0.4
0 -0.08 -0.10 -0.12

-10 -10.39 -10.53 -10.71

-20 -20.71 -20.95 -21.30

-40 -40.69 -40.94 -41.30

-60 -60.75 -60.99 -61.31

-80 -79.82 -80.45 -81.07
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Fig. 7.6. Target modeled to evaluate the dynamic range. (a) Sketch of the target. (b) Slice of the
reflectivity image.

7.3.2 Experimental Results

The proposed 3-D imaging algorithm has been validated experimentally by using an outdoor
linear SAR system developed at JRC which is known as LISA. This system is based on a
stepped frequency radar equipped with a 2-D positioning system. The maximum aperture
dimensions are limited to 5 m and 1 m in the horizontal and vertical cross-range directions,
respectively. The positioning accuracy is better than 0.1 mm. The frequency range is ba-
sically limited by the type of antennas being used. The system performs quasi-monostatic
measurements using two closely spaced horn antennas.
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Fig. 7.7 shows a scheme and photographs of the measurement set-up used in the
experimental validation. The target consists of a 3-D arrangement of eight metallic spheres
of diameter 7.62 cm. The dimensions of the 2-D synthetic aperture are 1 m, with a total
of 41 measurement points equally spaced along the horizontal and vertical directions. The
backscattered fields in HH polarization were acquired at 401 frequency points spaced 5 MHz
within the frequency range 15.5 to 17.5 GHz. The range, from the center of the aperture, to
the center of the target was 2.3 m. The plane of the aperture was tilted 14 degrees from the
vertical. The expected resolutions are 2 cm in the horizotiabnd vertical £) cross-range
directions, and 7.5 cm in the ground-rang® ¢irection.

The measurement time required in this experiment is approximately 2 hours. A 3-D
reflectivity image confined in a box of side 60 cm with 61 boxel in each dimension has been
reconstructed. The processing time was 1 min and 43 secs7.Bighows some slices out
of the reconstructed 3-D image: three slices at different ground-range<16, 0, +16 cm)
and cross-rangex(= —16, 0, +16 cm) positions. The displayed dynamic range is 20 dB. As
expected, the reflectivity at the positions of the spheres is about -23.4 dBsm, corresponding
to RCS given by the physical optics approximation. The measured spatial resolutions are in
agreement with the expected ones. Note that the reflectivity peaks of the spheres closer to the
antennas are narrower because the effective synthetic aperture is larger in the near range. On
the other hand, the spheres have a diameter of about four wavelengths and therefore they are
not ideal point scatterers. As a result, a minor degradation or defocusing must be expected.
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Fig. 7.7. Photographs and scheme of the experiment with LISA
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Fig. 7.8. Slices of the reconstructed 3-D image with the eight spheres measured by LISA

7.4 Extension of RMA to Cylindrical and Spherical Scan-
ning Geometries

We have seen that the main advantage of the RMA is the simultaneous accuracy and effi-
ciency demonstrated when applied to near-field configurations. The accuracy is excellent
thanks to the totally exact compensation of the wavefront curvature, which is exclusive of
this technique. The algorithm is also very efficient from the computational point of view
because it can be readily implemented with only FFT’s and an 1-D interpolation. Since
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the RMA enables the production of highly accurate images, even in near-field conditions, it
constitutes an ideal approach for experiments in anechoic chambers.

As was described in previous sections, this algorithm reaches the maximum effi-
ciency when the synthetic aperture is planar. In that case, the method can be applied directly
in the cartesian coordinate system, and hence the data processing along all directions can be
performed by using only FFT’s. Unfortunately, there is a considerable number of anechoic
chambers or indoor facilities that do not offer the possibility of carrying out such SAR exper-
iments by synthesizing a planar aperture. Two common cases are cited here. The first is an
inverse SAR set-up, whose aperture is generated in one dimension by a rotation of the target
about azimuth and in the other by changing the position of the antennas over a vertical circu-
lar rail (i.e. modifying the incidence angle). Consequently, the synthetic aperture becomes
a portion of a spherical surface. The second common configuration is that of a linear SAR
with an additional varying incidence angle produced as in the former case. The resulting
aperture conforms a part of a cylindrical surface. Both configurations can be applied at the
EMSL.

It would be desirable to develop new versions of the 3-D RMA adapted to these scan-
ning geometries. However, as was stated before, the advantage of the cartesian coordinate
system (i.e. the massive computation by FFT’s) would be lost if the cylindrical or spherical
coordinate systems were considered. The best solution, hence, is performing a transfor-
mation from the original data, acquired on non-planar apertures, into equivalent data on a
planar aperture, before the RMA is applied. In that way, the computational cost of the RMA
Is maintained, and only a moderate additional load must be considered as a result of the
transformation.

The proposed transformation has been carried out by employing field translations in
a similar way to those used in antenna measurements. These types of translations are ac-
complished by accounting for the field nature of the data in order to preserve all information.
The working principle is the following: since the target is confined by the surface on which
the data are measured (a cylinder or a sphere), it is possible to find the field in any other
point in space by only knowing the field on the surface. The aim of this translation is to find
the field thatwould have been measured a planar aperture by knowing the field thats
really measurean a cylindrical or spherical surface.

The first step of the method is the calculation of the modal coefficients of the harmon-
ics into which the measured field can be decomposed. This modal expansion is the solution
of the wave equation. The modal coefficients are determined by matching the fields on the
surface on which the fields are known. Once those coefficients are found, the mode sum-
mation is used for retrieving the field at a planar surface close to the original aperture. At
that stage, the RMA can be applied to the translated fields as it was originally formulated.
This procedure is summarized in the scheme depicted in7fB9gNote that, in general, the
original aperture does not cover the whole cylindrical or spherical surface, but the field can
be assumed to be zero on the non-covered part of the surface. It will be demonstrated in
the text that this assumption does not introduce an important error if the region in which the
translated field is computed is close enough to the surface with the original data.
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Frequency Domain Data Set

Cylindrical: d(@a,Kr, za)
Spherical: d(@a ,Kr,8a)
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a Planar Aperture
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Fig. 7.9. Scheme of the data processing for non-planar scanning geometries

= d(xa,Kr,za)

- s(X.y,z)

The text is organized as follows. Secti@nt.1describes briefly the formulation of
the data translation as a previous stage of the RMA processing. Details of the practical
implementation of the translation are provided in AppendiCeand D for the cylindrical
and spherical case, respectively. Some numerical simulations are analyzed in $&cfon
and Sectiory.4.3shows experimental results obtained by applying this technique.

7.4.1 Data Translation to a Planar Aperture
7.4.1.1 Cylindrical Aperture

Let us consider the geometry depicted in FidlCa. For convenience, the axis of the linear
displacement is associated with the cylindrigahxis. The angular position of the antennas
can be denoted by the standard azimuth angBy using the cylindrical coordinate system,
the wave equation can be easily formulated and solved (see details in Apggndix

For each frequency, the acquired field must satisfy the wave equation. The general
solution of that equation is a modal expansion with the following form:

KZmaa:

N
(A6 2) =Y D e HP(k,A) & ¥, (7.50)

n=—Nk,=—Kgz, ..
where A denotes the radius of the cylindrical surface.

The translation procedure starts by computing the coefficients of this modal expan-
sion. This calculus is carried out in a efficient way by means of FFT’s. Once the coefficients
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Fig. 7.10. Geometry of the original cylindrical and spherical apertures and the final planar aperture

are obtained, the summation of harmonics can be used to retrieve the field values at every
point on the planar aperture. The retrieved values have the appropriate form to be applied as
an input to the original 3-D RMA.

7.4.1.2 Spherical Aperture

The spherical-to-planar configuration is depicted in Fid.(b. In this case the standard
spherical coordinate system matches this geometry. The solution of the wave equation is an
expansion in series of spherical harmonics (see Appebylix

N

¢(A> ¢7 9) - Z Z Cm,n ejmqb (’Z_‘) : Fz(COS 9) h;’z)(kA) (751)
n=0 m=—n
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Fig. 7.11. Measurement set-up used in the numerical simulation with a 3-D array of 27 point scatter-
ers and a cylindrical synthetic aperture

The calculation of the expansion coefficients is similar in formulation to the method
described in 180, Chapter 4]. Only a few modifications have been introduced in order to
apply this technigue to the scalar wave equation instead of the vector one used in that book.
The procedure is based on the exploitation of orthogonality properties of both the exponential
functions and the associate Legendre functions. The computation can be efficiently imple-
mented by FFT’s as in the cylindrical case. However, the relations between the orthogonality
of the associate Legendre functions and the FFT’s are not as straightforward as before, thus
increasing the computational complexity. See Apperzlifor details.

There is an important point to clarify. In antenna measurements the acquired fields
on the aperture only travel the path from the antenna under test (the source) to the probe
antennas, whereas in a radar configuration the field travels from the antenna to the target and
from the target back to the antenna. Consequently, the wave equations to be solved must take
it into account. A simple way to incorporate this into the formulation is to congidiee
the wavenumber in the wave equation. In other words, the wavenuinakethis stage is
redefined adr f /c instead o~ f /¢, wheref in the working frequency andis the velocity
of light. This modification holds for both cylindrical and spherical cases.

7.4.2 Numerical Simulations

Fig. 7.11shows a sketch of the geometry used in the first numerical simulation. The target
consists of a 3-D array ¢f x 3 x 3 point scatterers uniformly distributed within a box of side

0.8 m, i.e. the scatterers form a mesh with a spacing of 40 cm. All scatterers have the same
RCS: 0 dBsm. A TX/RX antenna synthesizes a cylindrical aperture in the angular range
20° < ¢ < 40° with a radius of 2 m, centered at the target center. The linear dimension of
the aperture i€, = 2 m, and the frequency ranges from 2 to 6 GHz.
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Fig. 7.12. Comparison between translated and exact fields on the planar aperture. (a) Line at Z=0.
(b) Line at Y=0.985. (c) Line at Y=0.748

In order to illustrate the performance of the translation from the cylindrical aperture

to the planar one, some intermediate results are shown irYAig. These plots correspond

to a comparison between the translated fields (obtained by applying the translation discussed
in previous sections to the original data acquired on the cylindrical aperture) and the fields
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Fig. 7.13. Projections of the 3-D SAR image onto the three main planes. Simulation of 27 point
scatterers with a cylindrical aperture. Parametéts: 2 m, f = 2-6 GHz,A; = 100 MHz,20° <
¢ <40°, Ay =1° L, =2m,A., =4 cm. Displayed dynamic range = 30 dB

that would be measured on the planar aperture if it were employed instead of the cylindrical
one. Fig.7.12 presents the modulus and phase of the scattered fields along three linear
subapertures: the first consists of a line at constattthe center of the aperture; the second
corresponds to a line at constanat the center of the aperture; and the third is a line at
constanty but close to the bottom extreme of the aperture.

Some conclusions can be drawn from the behavior of the translated fields. Firstly, it
is evident that a quite good agreement has been found between translated and exact fields,
thus fully validating this technique. In general, the phase is more accurate than the modulus.
This is a good characteristic when working with radar imaging because the information is
mainly contained in the phase. As expected, there are small discrepancies in the phase when
the corresponding modulus is low. The error is higher at the extremes of the aperture, but
this will not cause problems on the imaging reconstruction because a windowing is normally
applied for reducing the secondary lobes. Therefore, the extremes of the aperture are mostly
masked by the window weights. Note that there exist some peaks in the phase which could
be considered as errors but are only skipgmoéiue to the cyclic nature of the phase. Finally,
note that the curves at constgrdare symmetric with respect to the center, whereas the curves
at constant are not. This is due to the symmetry of the aperture and the target along the
z axis, which is not present on the aperture aydrecause of the employed angular range.
Similar curves have been obtained in the spherical case.

Once the translation previous to the RMA processing has been validated, results of
the complete image generation are presented in the next figures. The first result corresponds
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Table 7.2. Computational performance

Step Time (s)
Freg-Domain Data Load 0.36
Equalization (Optional) 54.31
Translation to a Planar Aperture 46.63
2-D Along-Track FFT 14.76
Matched Filter and Stolt Interpolation 53.53
3-D Final IFFT 60.09
Coordinates Transformation (Optional) 3.51
Total Elapsed Time 233.19

to the image generated from the data used in the former simulation7 Eigshows a 3-D

image obtained from the array of 27 point scatterers. The image consists of a cube of side
1.2 m with a total of 61 boxel along every direction. A Kaiser-Bessek(2) window has

been applied along all dimensions of the frequency domain datd 8gt [The displayed
dynamic range is 30 dB. The image exhibits a different focusing for points at near and far
range due to the near field situation, but the reconstructed scatterers are located at their actual
positions, and their reflectivity agrees with the simulated RCS.

Table 7.2 presents the computation time of the algorithm in order to gain an insight
into the complexity of each part. Both equalization and coordinates transformation are op-
tional steps, so they are not considered in the total computation time. Note that the translation
to the planar aperture entails less than 1/3 of the total elapsed time. The required memory in
this simulation was about 11 MB.

Table 7.3. Reflectivity values for the target in Fig. 7.14

Nominal (dBsm)| x=-0.5 x=0  x=0.5
0 0.03 -0.09 -0.16

-10 -10.49 -10.92 -11.70

-20 -21.05 -21.72 -21.93

-30 -30.54 -30.89 -31.46

-40 -41.10 -41.81 -42.09

-50 -52.05 -50.23 -50.66

-60 -60.82 -61.88 -61.95

-70 -68.48 -69.38 -71.18

-80 -77.63 -79.48 -82.36

Itis worthwhile studying the effect of the translation on the dynamic range of the final
image. It was demonstrated in Sectio3.2that the imaging algorithm exhibits a dynamic
range better than 80 dB, which in practice means that the actual dynamic range will be limited
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Fig. 7.14. Target modeled to evaluate the dynamic range. (a) Sketch of the target. (b) Slice of the
reflectivity image

by system noise. However, in the cylindrical and spherical cases, the translation introduces
small inaccuracies in the signal as was previously shown. These imperfections should have
an effect on the quality of the final image. This influence has been analyzed by using a target
with a high dynamic range. The target consists of three parallel planes as that displayed in
Fig. 7.14a, separated 50 cm one from each other along the ground-range direction. Each
plane presents 9 point targets with reflectivities ranging from 0 to -80 dBsm. The synthetic
aperture is identical to that employed in the former example, but now the angle range is
—15° < ¢ < 15°. Fig. 7.14b shows a slice corresponding to the central plane. The displayed
dynamic range is 100 dB. The effective dynamic range free of noise is approximately around
70 dB, thus being slightly poorer than in the planar aperture case. Tébt®mpares the
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Fig. 7.15. Projections of the 3-D SAR image onto the three main planes. Simulation of 27 point
scatterers with a spherical aperture. Paramefers:2 m, f = 2-6 GHz,Ay = 100 MHz,0° < ¢ <
45°,60° < 0 < 75°, Ay = Ag = 1°. Displayed dynamic range = 30 dB

values of retrieved and nominal reflectivities. The maximum error is around 2.5 dB.

It is important to mention that the situation analyzed for illustrating the data transla-
tion and the influence on the final dynamic range is very severe, due to a extreme near-field
condition. It is possible to demonstrate that when the antenna and the target are more sepa-
rated (even without approaching a far-field situation) the translation performs better and the
final dynamic range is not as degraded as before. An example will be presented in the next
section.

The illustration of the spherical case is introduced in Fig5 The target is the same
as Fig.7.13 but now the antenna synthesizes an aperture with the shape of a portion of a
sphere with a radius of 2 m. The angular rangesfarel ¢ < 45° and60° < 6 < 75°.
Again, the quality of the final image is quite high, thus demonstrating the utility of the
present method. In the spherical case the translation is more time consuming than before,
and yields a computation time of the same order as the rest of the focusing algorithm. This
increase of time is due to the coefficients computation, described in AppBndvkich is
more complicated than the cylindrical case.
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Fig. 7.16. Top view and side view of a scheme of the target used in the experimental validation of
the cylindrical aperture

7.4.3 Experimental Results

A scheme of the target used in the first experiment is depicted irvHig.and a photograph

is also shown in Fig7.17. The target consists of an arrangement of metallic spheres and
trihedrals. The spheres have a diameter of 7.62 cm. There are two pairs of trihedrals with
different side lengths: 28 cm and 19.5 cm. The spheres and trihedrals are distributed on four
planes at different heights, and are fixed by supports of rohacell. More geometrical details
are described in Fig..16

The measurement was carried out in the frequency range 6—10 GHz. The target po-
sitioner was moved along a segment of 4 m, and the antennas covered the angular range
35° < ¢ < 55°. With these parameters the approximate theoretical resolutions to be ob-
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Fig. 7.17. Photograph of the target used in the experimental validation of the cylindrical aperture

tained are 3.75 cm in ground-range, 4.4 cm in cross-range and 5.4 cm in height, respectively.
Radar backscatter data were acquired at two polarizations: HH and VM. .ERshows the
images obtained at both polarizations. The reflectivity was reconstructed in a box ef 2 m

2 mx 0.8 m, with 201x 201 x 41 boxels. The displayed dynamic range is 60 dB.

The quality of images presented in Fig18confirm the accuracy of the image gen-
eration algorithm under a cylindrical scanning geometry. It is important to observe how the
spheres are well distinguished along the three main directions, yielding resolutions in agree-
ment with the expectations. On the other hand, the trihedrals exhibit a composite response:
a high peak centered at the trihedral phase center ahdlagape due to the diffraction on
the front edges. The peak at the phase center is independent from the polarization, showing
the same form in both images at HH and VV. Instead, the reflectivity at the edges changes
with the polarization due to their orientations. For example, the HH images show horizontal
segments with high reflectivity at all four trihedrals, whereas the other two edges of the front
triangle do not appear. Moreover, the upper peak of the two large trihedrals is also present
in the HH images. On the other hand, the horizontal edges have disappeared in the VV
images, but the other edges are present. Note that both edges of the large trihedrals can be
distinguished, but only the external one is evident in the small trihedrals. This phenomenon
is caused by the asymmetry of the aperture with respect to those edges.

The image is also accurate from the quantitative point of view. The expected RCS at
the central frequency (8 GHz) coincide with the retrieved RCS. The spheres show an RCS
of about -23 dBsm, the large trihedrals 6.6 dBsm and the small trihedrals 0.3 dBsm. The
theoretical reflectivity values can be calculated following the formula$&d][

Finally, note that the total computation time was only 1 hour and 1 minute. The
part corresponding to the field translation entailed 41 minutes, and the RMA processing the
remaining 20 minutes.

An experimental test of the spherical case has been also carried out at the EMSL. The
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Fig. 7.18. Isosurfaces and projections of the 3-D SAR image obtained in the experiment with a
cylindrical aperture. Parameter® = 9.56 m, f = 6-10 GHz,A; = 40 MHz, 35° < ¢ < 55°,
Ay =05° L, =4m,A,, =2.5cm. Displayed dynamic range = 60 dB

target used in this measurement is the 3-D arrangement of eight metallic spheres that was
already used in Section3.2(see photograph at the bottom of Fi§7). The measurement

has been conducted with the same angular span in azimuth and elevatipnsémpling

at 61 equally spaced points. The backscattered fields were acquired in HH polarization at
801 frequency points spaced 5 MHz within the frequency range 8-12 GHz. The number of
frequency points has been reduced by a factor of 20 after calibration. The range to the center
of the coordinates systemig= 9.56 m. The measurement time required in this experiment is
approximately 50 h. Note that there are 3600 antenna positions on the 2-D synthetic aperture.
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Height (o)

Fig. 7.19. Projections of the 3-D SAR image onto the three main planes. Experiment with a spherical
aperture. ParameterB=9.56 m,f =8-12 GHz0° < ¢ < 45°,45° < 0 < 90°. Displayed dynamic
range = 20 dB

A 3-D ISAR image consisting of a cube of side 60 cm with a total of 61 boxel along every
direction was reconstructed and is shown in Fid.9 The achieved resolutions, as expected,

are about 2 cm along the cross-range and height directions, and 4 cm along the ground-range
direction.

The total processing time was 2 h 5 min. The most consuming step was the translation
to a planar aperture, which entailed 1 h 42 min. This experiment has been compared with
a result presented infij. In that paper the author employed the same data set for the
experimental validation of a different imaging algorithm. The processing time with that
method was 3 h 27 min. Therefore, the 3-D RMA has demonstrated its efficiency even with
the use of a spherical geometry. Note that a direct comparison is appropriate in this case
because both implementations were programmed in the same language, and compiled and
executed on the same platform.

7.5 Conclusions

A new near-field 3-D radar imaging algorithm has been presented. It is an extension of the
2-D range migration algorithm. The formulation has been justified by using the method
of stationary phase. Implementation aspects including sampling criteria, resolutions and
computational complexity have been assessed. Numerical simulations have demonstrated
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the efficiency of the algorithm. The quality of the focused images is also very high, and
dynamic ranges better than 80 dB have been reached in numerical simulations.

The developed algorithm exhibits maximum efficiency when the synthetic aperture is
planar. In that case the method can be applied directly in the cartesian coordinate system, and
can be implemented by using FFT codes and an 1-D Lagrange interpolator. Moreover, an
extension of the 3-D RMA to the case of synthetic apertures with cylindrical and spherical
shapes has been introduced. Data acquired on those non-planar geometries are accurately
translated onto a planar aperture by using field translations in a way similar to antenna mea-
surement techniques. Once this translation is accomplished, the original 3-D RMA can be
applied. The computational efficiency of the method is maintained, since the translation only
entails a moderate increase of the total computation time.

The algorithm has been also validated experimentally using a vehicle-mounted SAR
system and the EMSL. All results have manifested the high performance of the algorithm
when it is applied to experimental data sets.

A complementary extension of the 3-D RMA is currently being investigated. It con-
sists in incorporating a superresolution code (e.g. MUSIC, linear prediction, etc.) after the
Stolt interpolation, instead of the final inverse Fourier transform. This substitution should fit
well because the data are uniformly spaced in the Fourier domain at that stage, which is the
starting point of those superresolution algorithms.



CHAPTER 8

Conclusions

The main objectives of this thesis have been accomplished. A review of the results is pre-
sented in the following. This chapter also illustrates the possible application of the main
results of the thesis to real air- or spaceborne systems, paying special attention to the general
design parameters and requirements to operate these techniques. Some fields of research are
also proposed as future extensions of the work developed here.

In first place, a polarimetric analysis of the radar backscatter response from vege-
tation has been completed successfully. Decomposition techniques have been applied in
various domains, providing a wealth of useful information about how vegetation is seen by
a radar. This decomposition was performed in three domains: 1) frequency domain data, 2)
time domain profiles, and 3) high resolution radar images. All three cases have yielded com-
plementary information because depending on the domain the signal is sensible to different
target characteristics.

The results in the frequency domain have shown the scattering properties of the sam-
ples as awhole. In general, the structure of an entire vegetation volume is so random that the
polarimetric entropy reaches its highest level for every scattering mechanism, and the targets
can be analyzed only in terms of backscattered power and depolarization. However, both
frequency and incidence angle have revealed that the backscatter return is very influenced by
the measurement geometry and band. The exact relationship between observations and fre-
guency band and incidence angle depends on the physical structure of the target. Therefore,
the variation of these parameters change from a vegetation kind to other, and also between
different samples of the same kind when they have dissimilar morphologies. For all sam-
ples the dominant scattering mechanism at steep angles is close to surface type due to the
reflection on the ground.

The frequency domain results have been justified by transforming the measured data
into time domain and thus identifying the position of the sample parts that contribute to the
scattering mechanisms. The time domain decomposition helps to understand the scattering
processes present in the samples and their dependence on the frequency and incidence angle,
leading to some interesting findings. For example, at X band the penetration into the maize



172 Conclusions

samples is quite high and, at the same time, there is a strong response from the leaves. More-
over, maize samples with young and mature plants have shown a different scattering behavior
as the wave penetrates into the sample. A differential extinction coefficient between orthog-
onal polarizations has been estimated in both cases. This differential extinction coefficient
is a key parameter for future polarimetric and interferometric studies on wave propagation
through vegetation. Concerning the measurements on the cluster of small fir trees, the high
dependence on the working band observed in the frequency domain has been associated with
the varying penetration depth observed in the time domain results. Plots of entropy and av-
erage alpha as a function of range also confirm that this target can be simply modeled as a
random volume over a half-space interface (the ground). The multi-layer vertical distribution

of scattering mechanisms inside the vegetation volume has been demonstrated, so this work
validates experimentally the foundations of polarimetric interferometry for vegetation height
retrieval.

Some 3-D reflectivity images obtained by ISAR experiments have been employed, to-
gether with decomposition techniques, for identifying the position and characteristics of the
scattering mechanisms in the target volume. These results have demonstrated the complex
nature of the interaction of the electromagnetic waves and the vegetation structure. Differ-
ent types of scattering mechanisms have been successfully located inside the samples. For
example, the fir tree exhibits a wide variety of scattering mechanisms: the trunk interacts
with the ground and with some branches in a clear dihedral fashion, some external branches
exhibit a planar arrangement that creates a surface type scattering, and the rest of the tree
is mainly dominated by the random dipole return from needles and branches. The ficus is
more heterogeneous and, as a result, the reflectivity images can be described as a distribu-
tion of well-defined spots corresponding to leaves and branches. The spatial distribution of
alpha and entropy values shows a cluster of leaves in the near-range area that produces a
clear surface-like response. This response may be originated by leaves which are oriented
normally to the line of sight, thus pointing to the antenna. The other parts of the image show
a dipole-like behavior that may be due to the scattering produced by the cylindrical branches
on which no leaves are pointing to the antennas. For this target the entropy is very low every-
where, as can be expected for a sample with its physical characteristics, i.e. itis a plant with
big and regular components (leaves and branches) in contrast with the fir tree. Additional
results were obtained for a cluster of small fir trees in healthy and damaged conditions, and
for a sample of rice crop.

Once all vegetation samples have been carefully examined and characterized with
fully polarimetric measurements and an ensuing target decomposition study, two inversion
methods have been presented and tested.

The first is a novel retrieval algorithm that shows the potentials of radar polarimetry.
This method enables the extraction of the particle shape and orientation distribution (aver-
age value and width of the distribution) from radar backscatter data. In its development, the
target is assumed to be homogeneous and composed of electrically small particles. It has
been shown how an eigenvalue analysis of the average backscatter coherency matrix may be
employed with a simple model of particle scattering to understand the physical basis of the
radar observables in a clearer way than is obtained by looking at simple polarimetric ratios
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such a HH/VV. In particular, it has been demonstrated thafike plane is a useful repre-
sentation of the average properties of the data. On this plane, effects due to particle shape
and orientation distributions are well separated, and hence one can employ this method in a
robust inversion procedure to estimate the physical parameters of a cloud from experimental
radar data.

This technique has been tested with samples of different morphologies to illustrate
its discrimination capabilities. For example, the physical components of a fir tree and a ficus
plant have been extracted from the data. In this thesis this inversion technique has been tested
only with frequency domain data (i.e. purely scatterometric). As a result, the estimation of
the particle shape behaves better than that of the angular distribution of orientations, because
the latter is influenced by the randomness of the target and an extensive azimuth averaging.
In the future, an extension to time domain data and high resolution images is planned. It
is expected to recover the shape and orientation of the components that are present in every
part of the vegetation structure, and hence the assumption of a homogeneous volume is no
longer necessary.

The results show a wavelength scale dependence of the shape and distribution of
scatterers which reflects the complex volume scattering nature of such targets. These re-
sults indicate that such an inverse model can be usefully employed for the study of canopy
scattering effects and for the inversion of radar data for vegetation and forestry classification
problems. Although such shape and angle distributions are built into forward scattering mod-
els like vector radiative transfe®@], this is the first attempt known to the author to extract
these parameters from radar data in an inversion process.

It is important to emphasize that the estimation results provided by this method are
quite satisfactory despite the simplicity of the particle model and the inversion procedure.
These encouraging results enable us to predict that an improvement of the method could be
affordable. The logical extension of the algorithm is the inclusion of more sophisticated par-
ticle models which would allow the use of larger and complex particles. Moreover, it would
be important to study the effect of multiple scattering and interaction between particles.

The second retrieval technique that has been examined in this thesis is the estimation
of height of vegetation covers by polarimetric SAR interferometry. This method consists in
combining interferometry and polarimetry in order to generate simultaneous interferograms
of the same scene. Each interferogram is associated with a different scattering mechanism.
In this way, since vegetation usually exhibits dissimilar scattering properties at different
height levels (as previously demonstrated with decomposition results), the relative difference
between those interferograms has a direct relation with the height of the vegetation cover
present in the scene. This method has been validated for different frequencies and samples,
yielding important conclusions about its applicability in real scenarios.

Some ideas can be anticipated about the use of this technique in real air- or space-
borne systems. If the application is control or monitoring of crops (e.g. corn and rice) the
use of C band is preferred to lower bands because it is important to measure a non negligible
return from the above-ground volume. At L band the backscatter is strongly dominated by
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the stem-ground interaction in such a way that the other scatter components become masked.
Moreover, since agricultural covers presents moderate heights (not more than 4 m), C band
provides better sensitivity to small height changes than L band for the same baseline. A
crucial point for the feasibility of this technique is the wave penetration into the vegetation
volume. In general, for agricultural layers C band provides enough penetration depth to
reach the ground. On the other hand, on forest applications, where the vegetation volume is
usually larger (some tens of meters) L band is better suited. This has been confirmed by some
recent outdoor experimentsg7, 171]. The bandwidth employed in the measurements is not

a constraint, since the resolution in slant range must be poorer than the vegetation depth for
enclosing the whole vegetation cover within a vertical resolution cell. If a large bandwidth

is available, it can be used in a multi-look processing for improving the estimates accuracy.

An issue that has not been studied at EMSL is the spatial averaging needed in real
situations. This aspect must be considered when working on natural scenarios and using
air- or spaceborne systems. Some indications about the complete procedure that should be
employed in those cases are presented.ifi]] In general, a multi-look scheme is useful
to reduce the variance of the estimates of the individual interferograms, and consequently of
the interferogram difference.

With regard to the incidence angle of the INSAR system, no special requirements
are necessary, since the ideal angle is arotifid This incidence is also recommended in
any interferometric system for balancing the probabilities of lay-over and shadow, and to
move the so-calletlind angle regiontowards less critical terrain slope$sdl]. As far as
our application is concerned, this angle is optimum because it allows a balance between the
backscatter returns from the ground-trunk (or ground-stem) interaction and from the above-
ground volume. Steeper angles would produce a larger direct response from the ground,
while gentler ones yield longer paths of the waves into the vegetation volume (thus making
difficult the penetration down to the ground) and a larger direct response from the above-
ground volume than the ground-trunk interaction. The baseline, which is another important
parameter in INSAR, can be selected or designed on the same basis as conventional (non
polarimetric) interferometry.

It is implicit in these comments that an INSAR system capable of providing useful
data to this retrieval algorithm should be fully polarimetric. From the examples presented
in the previous section, the best combinations of polarizations for estimating the height are
HH+VV and HH-VV, which are physically associated with the direct backscatter from the
above-ground particles and the ground-trunk interaction, respectively. A simpler INSAR
system might be designed without fully polarimetric properties, but providing only the two
copolar responses (HH and VV), because the crosspolar return is not used in that case. Any-
way, if the system is designed as a multipurpose device, the entire scattering matrix should
be measured in order to perform an interferometric coherence optimization, which provides a
remarkable improvement in DEM generation. The calibration procedure for a polarimetric-
interferometric airborne system has been deeply detailed7f, [L8Z. These references
provide the main requirements of hardware and processing for this application as well.

Since vegetation is a target with large temporal decorrelation properties, a single-pass
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interferometric system is preferred to a repeat-pass one. However, if for a specific application
the temporal decorrelation is not extreme, the algorithm can be still applied with guarantees
of success. The only price to be paid is a lower accuracy in the height estimates due to a
lower coherence.

It is also very important to note that the application of polarimetric interferometry
to vegetation height retrieval has the unique characteristic of being exempt of the problems
associated with absolute phase measurements with respect to a reference. Since the retrieved
height results from a relative difference between two simultaneous interferograms, the es-
timates are immune to errors caused by phase unwrapfiid. [ The only condition is,
of course, that the difference between the two phase centers associated with both scattering
mechanisms has to be smaller ttzan This requirement is easily satisfied for any operating
INSAR system.

Currently there is no operational spaceborne fully polarimetric interferometric SAR
system. Only a few airborne systems, like E-SAR from DLR, have introduced this polarimet-
ric capabilities. So far, the only fully polarimetric INSAR data available from a spaceborne
platform correspond to two missions of the Shuttle Imaging Radar SIR-C/X-SAR conducted
in 1994, on a repeat-pass mode, at L and C band. A new mission of the space shuttle,
called Shuttle Radar Topographic Mission (SRTM), is about to be launched. This constitutes
the first spaceborne single-pass/dual-antenna across-track interferometer to be operated, and
reuses the capabilities at C and X band of previous missions. The interferometric data will
not be fully polarimetric, but only HH and VV at C band. However they will be available
in single-pass mode and will provide a good field to test polarimetric SAR interferometry
for the retrieval of vegetation height. The lack of crosspolar data may not influence in the
success of this technique because, as illustrated in this thesis, the choice of the combined
channels HH+VV and HH-VV leads to excellent results. A review of other past, current and
future interferometric SAR systems can be consulted @]

Some theoretical studies of the potentials of polarimetric SAR interferometry for

retrieval of vegetation height have been carried out lately,[183. The main conclusion

of these analyses is that single-baseline polarimetric interferometry can be used to estimate
the heights of oriented volumes and underlying topography, whereas if vegetation shows no
preferred orientation (random oriented volume) polarimetry gives less information and two
baselines should be employed. These papers emphasize the importance of the differential
extinction coefficient between orthogonal polarizations, which was firstly introduced as a
crucial parameter (and also quantified) in this thesis. These ideas agree totally with the results
described in this thesis, since the best estimates were obtained for the maize (a vertically
oriented volume) and the worst ones for the cluster of fir trees (a random oriented volume).

There is also an active line of research about modeling of vegetation covers for study-
ing the behavior of polarimetric SAR interferometry with respect to the retrieval of biophys-
ical parameters. The main characteristic of these models is that they must be coherent in
order to provide an absolute phase, which is necessary in interferometry. Some ideas derived
in this thesis should be incorporated in these models.
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With regard to the generation of 3-D radar images at EMSL, a new and efficient algo-
rithm has been formulated, implemented and successfully tested. This proposed algorithm is
based on range migration techniques, and exhibits maximum efficiency when the synthetic
aperture is planar. It is an extension of the 2-D range migration algorithm. The formulation
has been justified by using the method of stationary phase. Implementation aspects includ-
ing sampling criteria, resolutions and computational complexity have been assessed. In the
planar case the method can be applied directly in the cartesian coordinate system, and can
be implemented by using FFT codes and an 1-D Lagrange interpolator. Moreover, an exten-
sion of the 3-D RMA to the case of synthetic apertures with cylindrical and spherical shapes
has been introduced. Data acquired on those non-planar geometries are accurately translated
onto a planar aperture by using field translations in a way similar to antenna measurement
techniques. Once this translation is accomplished, the original 3-D RMA can be applied.
The computational efficiency of the method is maintained, since the translation only entails
a moderate increase of the total computation time. This procedure corrects exactly the wave-
front curvature effect. As a result, it constitutes an ideal approach for producing images in
the EMSL, in which a near-field situation is usually present. Numerical simulations have
demonstrated the efficiency of the algorithm. The quality of the focused images is also very
high, and dynamic ranges better than 80 dB have been reached in numerical simulations.
The algorithm has been also validated experimentally using a vehicle-mounted SAR system
and the EMSL. All results have manifested the high performance of the algorithm when it is
applied to experimental data sets.

A complementary extension of the 3-D RMA is currently being investigated. It con-
sists in incorporating a superresolution code (e.g. MUSIC, linear prediction, etc.) after the
Stolt interpolation, instead of the final inverse Fourier transform. This substitution should fit
well because the data are uniformly spaced in the Fourier domain at that stage, which is the
starting point of those superresolution algorithms.

In summary, the main goal of this thesis has been achieved, i.e. a demonstration of
the remarkable contribution that polarimetry can offer in quantitative remote sensing of veg-
etation. These methods have been successfully tested in laboratory conditions. The methods
presented here are expected to be applied in real scenarios under natural conditions. The
results of this thesis should lead to a better deployment of the information provided by radar
polarimetry in remote sensing. Finally, note that the work conducted in this thesis has pro-
duced a great interest in the scientific community. This interest is endorsed by the publication
of this research in several papers in international journals and the discussion of its results in
various conferences. A list with all publications is shown in the next pages.
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APPENDIXA

Abbreviations and Band Designations

BSA
CSA
cw
DEM
DFT
FFT
FReD
FSA
FT
IFFT
INSAR
ISAR
MSP
PFA
PDF
RCS
RFI
RMA
SAR
D

Abbreviations

Backward Scattering Alignment
Chirp Scaling Algorithm
Continuous Wave

Digital Elevation Model
Discrete Fourier Transform
Fast Fourier Transform
Frequency domain Replication and Downsampling
Forward Scattering Alignment
Fourier Transfrom

Inverse Fast Fourier Transform
SAR Interferometry

Inverse SAR

Method of Stationary Phase
Polar Format Algorithm
Probability Density Function
Radar Cross Section

Radio Frequency Interference
Range Migration Algorithm
Synthetic Aperture Radar
Target Decomposition



180

Abbreviations and Band Designations

Table A.1. Band Designations

Band Designatior

Frequency (GHz) Wavelength (cm)

S<OXRXOwmnro

0.225-0.39
0.39-1.55
1.55-4.20
4.20-5.75
5.75-10.9
10.9-36.0
36.0-46.0
46.0 - 56.0
56.0-100.0

77.9-133.3
19.3-77.9
7.1-19.3
5.2-7.1
2.7-52
0.83-2.7
0.65-0.83
0.53-0.65
0.30-0.53




APPENDIXB

Scattering by a Random Cloud of
Ellipsoids

HAPTER 5was devoted to explain a method for retrieving the shape and the orientation

distribution of elementary particles that constitute a random medium. This random
medium is a quite usual model for vegetation volumes. The inversion method was based
on a scattering model for the constituent particles, which are regarded as ellipsoids of small
electrical size. Although the scattering theory for this type of particles can be foutdl]jn [
it is important to derive and present the formulation for the polarimetric analysis used in this
thesis, i.e. on the basis of the coherency matrix. Moreover, a notation coherent with the
rest of the text is also necessary to avoid misleading formulas. Therefore, for the sake of
completeness and clarity, this appendix illustrates the details of the scattering model for a
random cloud of ellipsoids and presents the particular case employed in Chapter

The material is organized as follows. SectBri gives the explicit expressions of
the scattering matrix of one individual particle. The entries of the scattering matrix are func-
tions of the shape ratio of the particle and its orientation in the global reference system. An
averaging over the distributions of orientation angles yields the coherency matrices corre-
sponding to a set of particles, as is described in Sedi@n In that section, the loci off
anda are studied as a function of the particle shape ratio and the width of the orientation
distribution. That study constitutes the foundations of the inversion algorithm presented in
Chapter5. However, it will be shown that the loci off anda also depend on the specific
definition of the orientation angles, in such a way that if the particles are initially rotated,
the final loci are different. Therefore, a new formulation for a rotated case is presented in
SectionB.3. In fact, this final formulation was that actually applied in the development of
the inversion technique, as will be justified in the text.
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B.1 Scattering Matrix for One Particle

In the following it is assumed that the particle analyzed in this section is small compared to
the wavelength, both outside and inside the particle. The scattering by such a small particle
can be studied in terms of a concept knowpalarizability p. The simplification introduced

by the small size is that the particle may be considered to be placed in a homogeneous inci-
dent fieldE®. This incident field creates an induced dipole moment for which the following
electrostatic formula is applicable:

p = pE". (B.1)

In general,p is a tensor, so the directions pfandE’ coincide only if the field is
applied in one of the three main directions of the particle. Let the orientation of the particle
in space be characterized by three perpendicular unit venions, andn; (see FigB.1).

The particle is then characterized by the three tensor compopgnis and ps, also called
polarizabilities in such a way that any incident field

Ei = E1n1 —+ E2n2 —+ E3n3 (BZ)
gives the dipole moment:

p = p1Eing + paEony + p3F3ng. (B.3)

Fig. B.1. Generic particle oriented according to its three unit vectors

In the case we are analyzing, the incident field is a time-harmonic plane wave with
an arbitrary polarization, and the dipole (which now is an oscillating dipole) radiates in all
directions. This type of scattering is call&&hyleigh scattering For a point at a distance
r > ) from the particle and in a direction that makes an ang¥eth p, the magnitude of
the scattered field is proportional fie| sin . The unit vector of the scattered field is directed
as the component gf normal to the vector that joins the particle with the field phint

Due to its flexibility for modeling many possible particles shapes by only working
with the axes lengths (spheres, needles, disks, etc.), an ellipsoid was the particle shape cho-

1The basic physics underlying this formulation are explained elsewhér€papter 6]
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Fig. B.2. Scattering geometry by an ellipsoid in the canonical (non-rotated) position

sen for the polarimetric inversion method presented in Ch&pteor an ellipsoid, the polar-
izabilities have the expression:

v
Pi =
17 (Li+ )

i=1,2,3, (B.4)

whereV is the total volume of the ellipsoid;, is the relative dielectric constant of the
particle, andL; are three factors depending on the ratios of the axes.

The values of’; can be accurately described by the following relationships:

Li+ Lo+ Ly=1 (B.5)

1 1 1
Ly:Ly:Ly=—:—:—, (B.6)

wherezx; are the lengths of the three main axes of the ellipsoid. Note Eha} &4lways holds,
and B.6) is an approximate rule with enough accuracy for our purposegpp. 70-73].

In order to compute the entries of the scattering matrix for an arbitrary ellipsoid, let
us assume the geometry depicted in B@. For simplicity the incidence direction has been
selected as the positiveaxis, and only the backscattering case will be considered in the
following. Fig. B.2 shows the ellipsoid in the canonical position, i.e. with its three anes (

n, andny) parallel to the cartesian unit vectatsy andz, respectively.
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The induced dipole moment presents the following three components:

Pz = Ef,Pll + Ezplg (B7)
py = E.Ps1 + E}, Py (B.8)
p. = E'P3y + Ej Py, (B.9)

where the incident field is decomposed into vertical and horizontal components.

The constant®’;;, stand for
Pij; = Py = ciicrip1 + CiaCrapa + CisCraps, (B.10)

wherec;; are the coefficients of the following linear relations:

X = €111 + C12Ng + €133 (B.11)
Y = Co1Iy + Coollp + Co3Ny (B.12)
Z = Cc311 + C39No + C33N3. (813)

These linear combinations provide the relationship between the particle orientation
and the coordinate system. The standard procedure for obtaining an explicit formula for the
coefficientse;; is the application of the Euler angles. The displacement of a body due to a
rotation about a fixed point can be modeled by performing three Euler rotations about two
of three mutually perpendicular axes fixed in the body. By assuming a right-handed frame
of axes, the rotations are illustrated in Fi§3, where the original axes are namedy, z).

The typical rotations about Euler angles are defined in the following order:

1. Rotation of¢ aboutz — (2/, ¢/, '), with0 < ¢ < 27
2. Rotation ofr abouty’ — (2", y",2"), with0 < 7 <7
3. Rotation off aboutz” — (2" y", 2", with0 < 0 < 27
In this thesis, these three angles are called: spin amgi# angler, and canting or

rotation angle). For each rotation, the original axes can be expressed in terms of the new
axes by using a rotation matrix. The expression of the three rotation matrces is

[cosp —sing 0

[Cy] = |sing cos¢p 0 (B.14)
| 0 0 1
[ cosT 0 sinT

C;] = 0 1 0 (B.15)

—sinT 0 cosT

[cosf —sinf 0
[Cy] = |sinf cos® O, (B.16)
0 0 1

2Note that if one wants to express the new axes in terms of the original axes all the matrices should be
transposed
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Fig. B.3. lllustration of the Euler angles and the three rotations

and the chain of rotations is denoted by a matrix product:
[C] = [ColICH]IC), (B.17)

where the order has been reversed in order to apply the rotation about the cantingiangle
the last step as required in the model used in Chéptdhe entries ofC|] are directly the
¢;; coefficients needed above.

As was explained before, the backscattered field can be obtained as the component
of p that is perpendicular to the propagation direction. By expressing the measured field in
terms of the vertical and horizontal polarizations of the BSA convention, it yields:

E;=p, and E; =p,. (B.18)

Finally, by substitutingB.7)-(B.9) into (B.18), the scattering matrix of an ellipsoid
in the backscattering direction can be expressed as:

(8] = {21 22] : (B.19)

where the elementB;; were defined inB.10). To turn back to the notation used throughout
the thesis, the scattering matrix of an ellipsoid, oriented according to the Euler angles, can
be written in the following form:

(5] = {Z ﬂ , (8.20)
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where

a =p1(cos B cos T cos ¢ — sin f sin ¢)?

+ pa(sin 6 cos ¢ + cos 6 cos T sin ¢)?

+ ps cos? O sin® T (B.21)
d =p1(sin 6 cos T cos ¢ + cos O sin ¢)?

+ pa(cos B cos ¢ — sin f cos 7 sin ¢)?

+ pysin® fsin® 7 (B.22)
¢ =p1(sin 6 cos 7 cos ¢ + cos O sin @) (cos 0 cos T cos ¢ — sin @ sin ¢)

— pa(sin cos ¢ + cos b cos 7 sin ¢)(cos f cos ¢ — sin @ cos T sin @)

+ p3 cos 0 sin O sin? 7. (B.23)

B.1.1 The Spheroid Case

In order to reduce the number of parameters or degrees of freedom of the model, the case
of an spheroid is analyzed in the rest of the text. For such an spheroid there are two equal
axes that, for convenience, are selected- x3, so the rotation about the spin Euler angle

is not longer meaningful. Therefore it is possible simplifying the elements of the scattering
matrix defined in B.21)-(B.23) by taking¢ = 0. The resulting scattering amplitudes are:

a = p1 cos® 0 cos® T + pysin® O + ps cos® Osin® 1 (B.24)
d = pysin® 0 cos® T + py cos® 0 + pgsin® O sin’® 1 (B.25)
c = (pycos® T — py + p3sin® 7) cos O sin 6, (B.26)

where a further simplificationp§ = p3) has not been included.

Moreover, of particular importance is tla@isotropyA defined as the ratio of eigen-
values of[S] whent = 0. In that case, the scattering amplitudes are:

a = py cos?  + pysin® 6 (B.27)
d = pysin® 6 + py cos® 0 (B.28)
¢ = pipcosfsinf — pycosfsinb, (B.29)

and the eigenvalues for this particular casemrandp,. Then, their ratio yields:

P1 LQ(ET_l)"—l

Since we have assumed spheroidal shapes= x3) the anisotropyA can be ex-
pressed in terms of the particle shape ratic= x5/x;. In the spheroidal case, the relations
betweenl; andL,, firstly shown in B.5)-(B.6), yield:

L1 T

L, T
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Both can be substituted int&(30), and the resulting expression is:

2
A= m) (B.32)
m+e +1

wherem is defined in the rangé < m < oo and corresponds to:

{m <1 Prolate spheroids (B.33)

m > 1 Oblate spheroids

As was already explained in Chaptgithe constituent particles of a vegetation target
usually exhibit a high dielectric constant at microwave frequencies. As a ré&s8R)(can
be reduced tol ~ m and, consequentlyl can be regarded as the particle shape ratio. This
will be used in next section to simplify the mathematical derivations.

B.2 Coherency Matrices for a Cloud of Particles

This section is dedicated to the analysis of the scattering by a cloud of ellipsoids by using
target decomposition techniques. The analysis is specifically performed by plotting the pairs
of entropy H and dominant scattering mechanisnon the H — « plane. This study con-
centrates on two main parameters of the cloud of particles: the shape of the particles and the
orientation distribution. It is assumed that only single scattering is significant, and that each
particle in the cloud acts independently of its neighbors. We also assume that the particles
in the cloud are identical in size but have a distribution of orientation angles around zero.
Therefore, the ensemble averaging of the coherency matrix is calculated by integration over
the angular spans of interest.

The expression of the coherency matrix, in terms of the scattering amplitudes, is:

(a+d)? a®*—d* 2a+d)c
(T ==(| a®*=d* (a—d)? 2(a—d)c|), (B.34)
2(a+d)c 2(a—d)c 4c?

where, for the sake of simplicity, the polarizabilities are considered to be real. Note that the
results are easily generalized to the complex case.

Let ¢;;(6, 7, ¢) be the elements of the coherency matrix corresponding to a single
particle oriented according to the three andlésr, ¢). Then, the resulting element of the
average coherency matrig,;), is computed by integrating over the angular ranges in which
each angle is defined. This can be expressed as:

<tl]>:/9//¢t21(977—7¢) SlHTd(dede, (835)
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where the factosin 7 comes from the size of the differential on the unit sphere (or differential
solid angle).

Some cases with different degrees of randomness are presented in the next sections
in order to illustrate the behavior of tHé — @ loci as a function of the parameters of interest
in the inversion algorithm.

Furthermore, since we are interested in the shape of the particles, and not in their ab-
solute size, the polarizabilities have been normalized. As a result, the following formulation
is derived by taking;, = 1 andp, = p3 = A. This expression comes from the definition of
the particle anisotropyl in (B.30).

B.2.1 A totally random cloud of ellipsoids

The first situation to be analyzed is a totally random cloud of ellipsoids. This case was also
studied in [L1] by using the Mueller matrix. By applying the relations between the entries

of the Mueller matrix([A/]) and the coherency matri{7|), described in Chaptes, it is
possible to demonstrate that the results presented in the following are in total agreement
with the derivations shown ir[l] for a random cloud of ellipsoids.

The averaging is computed over the whole range of every Euler angle, thus perform-
ing the following integration:

1 2T T 2T
(tij) = —/ / / tii(0,7,¢) sinT de dr db, (B.36)
872 Jo o Jo
where the normalization factor has been introduced for convenience.

The resulting coherency matrix is diagonal:

ty 0 0
((TT)=10 tn O (B.37)
0 0 i3
and the normalized entries are:
tin = (2+ 64+ T7A?% (B.38)
tog = (A — 1)2 (B.39)

The values off anda as a function ofd are plotted in FigB.4. As might be expected
from the full randomness of the cloud, all the points corresponding to this coherency matrix
lie along the border of the feasible region on fie- « plane. For spherical particles, with
A =1 (log;y A = 0), the orientation does not change their aspect, so the entropy is always
zero and the dominant scattering mechanise 0 corresponds to scattering from surfaces
or spheres. The limit cases whdn— 0 (dipoles or needles) and — oo (disks) yield the
following extreme values:
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Average o (degrees)

‘OgmA ‘ngoA

Fig. B.4. H anda plots as a function of the particle anisotragyor a fully random cloud of particles

Prolate A—0 a@—45° H — 0.95
Oblate A —0oc0c a—20° H — 0.62

The inversion method proposed in this thesis has profited from the different absolute
maxima of H and«a for prolate and oblate cases, thus yielding unambiguous the ranges
0.62 < H < 0.950r20° < & < 45°.

B.2.2 Random cloud in 7 and ¢. Finite span in 6

A second important case consists of a cloud of ellipsoids with fully random distributions
overrt and¢, but with a distribution over a finite span éh The distribution ird is chosen to
be uniform and ranging from© to ©.

Now the integrals are:

0=06
<t7,j> 47[_ 2@ / / Z-j(G, T, ¢) sin T d¢ dT d@, (B41)

and the resulting coherency matrix is:

tin tiz O
([T]) = |tie t22 O |, (B.42)
0 0 (33
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Fig. B.5. H — @ plots for a cloud with a finite span #t 0 < © < 7 /2, and totally random in- and
¢

where

t = 135(2 +6A + TA?) (B.43)
(1142 —2A—9)sin20

tiy = 506 (B.44)
~ (A—1)%(320 + 3sin40)

toy = 5106 (B.45)
~ (A—1)%(320 — 3sin40)

t33 = 5100 : (B.46)

From this coherency matrix one can compute the plots for prolate and oblate cases
shown in Fig.B.5. These are parametric curves with two varying paramet¢i@do, and
their principles were explained in ChaptenWe can see that the loci are always close to the
curve of maximum entropy for every scattering mechanism. In fact, even for no variation in
0 (© = 0) the loci do not exhibit zero entropy, neither for the prolate nor the oblate case.
This is logical because the angjeis defined in the same way @sso a range ofx in ¢
produce some amount of entropy. In the extreme situation of maxi@uthe loci of both
entropy and dominant scattering mechanism coincide with the results of the previous case:

full randomness about all angles.

Note that for natural targets with high entropy, as those modeled by this particle
distribution, the spacing between lines in AR5 already predicts that the inversion of the
shape parametet is better than the inversion of the width of distribution, since the isolines
in the first case are more distant than in the latter.
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Fig. B.6. H — @ plots for a cloud random im with a finite span irf: 0 < © < 7/2, andgp = 0

B.2.3 Constant ¢ =0, random cloud in 7, and finite span in ¢

The third case consists in fixing= 0, while keeping a full randomnessimand a finite span
in 0. The elements of the scattering matrix wher= 0 were already presented iB.4)-

(B.26).

With this configuration, the integration for the coherency matrix is:

=6 s
<tz]> = L/ / tij(e,T) sin T dr d9, (847)
20 6=—0 J0

resulting in the following non-zero terms:

(3 + 14A + 43A2)

ln = T (B.48)
(3444 —-7A%)sin20

tig = 300 (B.49)
~ (A—1)*(40 +sin40)

toy = 106 (B.50)
~ (A—-1)*(4© —sin40)

fs — — . (B.51)

The loci of H anda are plotted in FigB.6. Note that there exist considerable changes
from the previous case. For example, the oblate case does not reach the maximum entropy of
0.62 as before. This lower entropy is caused by the aspect of the particles from the antenna
position. Due to the fixeg = 0, the effect of the tilt angle is to rotate directly the particle
from its initial position. Whenp # 0 the particle was already rotated on the plane normal
to the line of sight, thus introducing more randomness in the scattering process. Moreover,
the weighting functionin 7 in the integration penalizes the positions whelis close to0°
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and180° (for which the particle is like a dipole as seen from the radar), whereas gives more
importance to positions close to = 90° (for which it is like a sphere). These ideas are
described in a graphical way in Fig.7.

>
>

Particle oriented at = 0° Particle oriented at = 90°

Fig. B.7. Aspect of the particles from the radar viewpoint wheg- 0 for two different values of

On the other hand, the prolate particles have now an entropy span from 0 to 0.95,
thus covering mostly the region on the plane witks 45°. Prolate particles, hence, can still
provide low entropy if they are not very randomly oriented.

B.2.4 Constant ¢ =0 and 7 = 0, and finite span in 0

The final case treated in this section corresponds to a distribution of particles lying on a
plane normal to the line of sight. For such a geometry, it is necessaryiteHfif. Moreover,
whent = ( the other two angleg andf are equivalent. As a result, it is enough to provide
freedom td by fixing ¢ = 0 as well. The entries of the scattering matrix o= 7 = 0 were
shown in B.27)-(B.29), and the coherency matrix is obtained by the following integration:

0=06

The resulting non-zero terms are:

ti = (1+ A)? (B.53)
_ (1-A*sin20
thy = 26 (B.54)
12 -
b — (A-1) (4;(3—1- sin40) (B.55)

(A —1)%(40 — sin40)

t33 = B.56
. - (B.56)
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In this configuration, the plots are similar for oblate and prolate cases since, from the
radar position, a particle witA close to 0 is viewed equivalently to a particle with very high

A (see FigB.9 for demonstration).
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Prolate:0 < A < 1 Oblate:1 < A <

Fig. B.8. H — @ plots for a cloud random with a finite spandn0 < © < «/2, andr = ¢ =0

0
97/%
Prolate:A < 1 Oblate: A > 1

Fig. B.9. Aspect of the particles from the radar viewpoint wher= 7 = 0 for prolate and oblate
cases
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B.3 Coherency Matrices for a Cloud of Particles: Dif-
ferent Initial Position

The variety of the results presented in Sectibf, as a function of the angles that can be
fixed for each plot, suggests that new results could be obtained if the spheroid were defined
in a different manner. This phenomenon is illustrated in this section.

The study case is a spheroid like that displayed in Bi@0. This corresponds to the
same as before but rotatéd° in tilt. Equivalently, the formulation can be easily derived
by interchanging or swapping the first and third polarizabilittesandps. This interchange
means that the two equal axes lengths would pe- x5, instead ofr, = x3. Therefore, by
simply swapping; andps the new formulation can be obtained in a simple way.

Fig. B.10. Scattering geometry by an ellipsoid for the new initial position. Displayed according to
T=0°

By introducing this change in the scattering matrix, its entries yield:
a =p; cos® @sin® 7

+ pa(sin @ cos ¢ + cos 6 cos T sin ¢)*

+ ps(cos f cos T cos ¢ — sin O sin ¢)? (B.57)
d =p; sin® @ sin® 7

+ pa(cos B cos ¢ — sin § cos 7 sin ¢)*

4 ps(sin @ cos T cos ¢ + cos O sin ¢)? (B.58)
¢ =p; cos Osin O sin® 7

— pa2(sin b cos ¢ + cos 6 cos 7 sin ¢)(cos 6 cos ¢ — sin 6 cos 7 sin @)

+ p3(sin @ cos T cos ¢ + cos O sin ¢)(cos 0 cos T cos ¢ — sin O sin @). (B.59)

The same particular cases of previous sections are revisited in the next sections with
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the new formulation.

B.3.1 Random cloud in 7 and ¢. Finite span in ¢

The case of full randomness thand¢, and a finite span ifl, results in the following non-
zero elements of the coherency matrix:

t = 135(2 + 64+ 7A%) (B.60)
_ (2+ A—34%)sin20

tiy = 56 (B.61)
(A —1)%(40 +sin40)

toy = 200 (B.62)
_ (A—1)%(4© —sin40)

ta33 = 200 : (B.63)

The loci of entropy and dominant scattering mechanism oiifthey plane are shown
in Fig. B.11 Note that for low spans ifAthe resulting entropy is lower than in Fig.5. This
phenomenon is caused by the new geometry because the aspect of the particle does not
change with the initial rotation about thus leaving the entropy to be produced only by the
rotations about andd.
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Fig. B.11. H — @ plots for a cloud with a finite span ift 0 < © < 7/2, and totally random im
and¢

B.3.2 Constant ¢ = 0, random cloud in 7, and finite span in ¢

From the previous explanation of Fif.11, it follows that the¢ angle has lost its effect on
the polarimetric behavior of the cloud of particles. This effect has been further demonstrated
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x>
>

Rotation abouty  Rotation abou#

Fig. B.12. Aspect of the particle from the radar viewpoint when it is rotated aloaind when
T=0

by substitutings = 0 into the scattering amplitudes, yielding:

a = p; cos® @sin® T + pysin® 0 + p3 cos? § cos® T (B.64)
d = pysin?0sin® 7 + py cos® O + p3sin? f cos® T (B.65)
c = (py1sin® 7 — py + p3 cos® 7) cos O sin 6. (B.66)

When the coherency matrices are computed, the resulting entries are exactly the same
as those presented iB.60)-(B.63), thus confirming the expectations.

This independence with respect#as the reason of the choice of this configuration
for the development of the inversion algorithm described in Chapter

B.3.3 Constant ¢ =0 and 7 = 0, and finite span in ¢

Finally, let us study the particular case of no tilt angle variation,7.es 0. In this situation
the only varying angle ig, but from the antenna position the particle does not change with
this angle. This effect is shown in Fi§.12

This is also obvious in the entries of the scattering matrix:

a = pysin® 6 + pscos® 6 (B.67)
d = pycos? § + pgsin® 6 (B.68)
¢ = (ps — p2) cosfsinb. (B.69)

If we substitute the spheroid condition = z3, the scattering matrix becomes pro-
portional to the identity matrix. The only present scattering mechanism is, hence, surface (or
sphere) type. Moreover, the coherency matrix presentsignky 0.
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Cylindrical Wave Formulation

HE conjunction of the linear movement of the target positioner with the circular move-

ment of the antennas sled produces a synthetic aperture with cylindrical shape. Backscat-
ter data acquired under this geometry at EMSL can be used as an input to the 3-D RMA by
first translating them to a planar aperture. This translation must be performed by accounting
for their field nature in order to preserve all information.

The translation is based on the following known principle. In a source-free region,
specifying the tangential electric field everywhere on a closed surface is sufficient to deter-
mine the total field elsewhere, if certain additional conditions hold. In our case, this closed
surface is the indefinite cylinder on which the measurements are acquired. The transforma-
tion of field data from a cylindrical surface to another place is accomplished by representing
the field as a summation of free-space modes. The mode coefficients are determined by
matching the fields on the surface with the modal expansion solution of the wave equation.
Once these coefficients are found, the field can be computed everywhere by using the mode
summation. Note that, although the field is only known on a portion of the cylinder, if the
points where the field has to be translated are close to this portion, a negligible error is ob-
tained by assuming the field to be zero on the rest of the cylinder.

The formulation and actual implementation of this field translation under cylindrical
coordinates are shown in this appendix. The translation is repeated for every frequency in the
synthesized bandwidth. Secti@nl presents the formal solution of the scalar wave equation
in cylindrical coordinates. The practical procedure that has been implemented, emphasizing
the use of Fourier Transforms to accelerate the computations, is described in Se2tion
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C.1 Solution to the Scalar Wave Equation in Cylindrical
Coordinates

The solution of the wave equation in cylindrical coordinates has been widely detailed in
literature [L84, 185. In this study we are mainly interested in the scalar wave equation,
since we assume the measured values to be purely scalar data. It is known that some non-
zero radial component exists in near-field situations, but if we consider it negligible the
results are accurate enough for our purposes.

By using the conventional cylindrical coordinate system, the scalar Helmholtz equa-
tion can be written aslBS:
10 ( 81/1) 1 0% 0%

—_—— — —_— —_— 2 =
25, \P3, )t g t s TRV =0 (C.1)

where the scalar field is denoted:as

This equation can be solved by the method of separation of variables, yielding the
following elementary wave functions:

@ijp,n,krz = Bn(kpp)h(n¢)h(kzz)a (C.2)

whereh(z) are solutions of théarmonicequation, and3,,(k,p) are solutions of thBessel
equationof ordern. The wavenumbers alongandz, i.e. k, andk,, are interrelated by:

K24 k2 = K2 (C.3)

A general solution for€.1) can be constructed as a linear combination of the elemen-
tary wave functions. This linear combination is formed by sums evandk., or n andk,
(but not overk, andk, since they are not independent). For convenience, we will construct

the general solutions as:
V=3 bk (C.4)

n k.

Theharmonic functiorcan be chosen as a linear combinatioriofx) andcos(z), or
e’ ande~7%. The complex exponentials have been chosen because they are more suited for a
direct use of Fourier transforms. For the azimuthal varightlee function must be periodic
(with a period of27), son must be an integer. For the cartesian variahli,s wavenumber
does not present this restriction and can be a real number. On the other haHanket
function of second kind{f)(kpp) has been selected for the solution of Bessel equatian
This choice is based upon the signal to be modeled, which is a field reflected from the target
and, hence, can be regarded as an outward-traveling wave. In summary, the elementary wave
functions take the form:

Uy, = HE (kpp) " 2, (C.5)

n
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with n integer.

The summation in@.4) is understood in this way:

2.2.- >y (C.6)

n=—o0 k,=—0oc0

In practice, the summations will be always truncated at values + N andk, =
+Ky, ... The maximum value of depends on the radius of the minimum cylinder, centered
at the same point of the measurement cylinder, that contains all the scattering points of the
target. If the radius of the minimum cylinder is nameggdthe following empirical rule gives
an estimate forv:
N = [kypo] +na, (C.7)

where the square brackets denoteittteger part and the integer; depends on the accuracy
required. The maximum value & depends on the maximum degree of variation of the
signal in thez direction, which in turn is usually fixed by thedimension of the target.

Note that, as was justified in Chaptérk must betwice the wavenumber, i.ek =
47 f /e. This modification is introduced in the formulation in order to take into account the
round-trip path followed by the radar signal, instead of the one-way situation present in
antenna measurements.

C.2 Practical Implementation

In next sections, the analytical method for solving the coefficients of the cylindrical modes
summation is formulated, and the application of this method to the practical case of sampled
data is presented.

C.2.1 Analytical Computation of the Coefficients c,, ;.

From the previous equations we can conclude that the field measured at a single frequency
on a cylinder of radiup = A can be expressed as a linear combination of the elementary
wave functions in the following way:

KZm azx

Z >k HP(k,A) &7 0=, (C.8)

n=—N kz_iKZ'maw

To begin with, it is useful to rewrited.8) in the following way:

KZ’NL ax

V(A G, 2) = D (s A) N, (C.9)

kz:_KZmaz
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where

N
cr (6 A) = ) enp HO (k,A) & (C.10)

n=—N

As is evident from C.9), ¢x_ (¢, A) is a coefficient in the expansion gfinto a finite
Fourier series irr. We can solve.9) for ¢, (¢, A) by multiplying both sides by—7*:* and
integrating with respect te from z,,,;,, t0 2,42

Zmin
KZmaz

/ TY ()| ez = (s — ) e (6. A). (C11)

Zmin kz:_KZmaz

Therefore, the coefficients,_ (¢, A) are the Fourier transform of the data along

ie..
1 Zmazx )
6 (0.A) = [ oA 0. e (€12)
Zmaz — Amin Jzpim
The next step consists in rewriting tharansformed formula®.10) in this way:
N
(6 A) = Y cup(A) ", (C.13)
n=—N
where
Cni(A) = cop. HP (k,A). (C.14)

The application of the Fourier transform to thevariable, in an analogous way as
before withz, yields the analytical solution for the coefficiefts;. (A):

1

T2

27
e (A) /O i (6, A) e g, (C.15)

Finally, the radial dependence can be removed from the coefficigptdy dividing
by the Hankel functions:
Cn k. (A)

- . C.16
H? (k,A) (C.16)

Cn.k,

C.2.2 Discrete Computation of the Coefficients ¢, j_

In the former section we have derived the analytical expressions for the determination of the
coefficients of the summation of wave functions or harmonics. They have the form of two
Fourier transforms. Consequently, the most efficient way to compute them is by using FFT’s.
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In order to do that, the samples must be taken (as it is always the case) with constant
sampling. For example, for the integral overthe samples are taken with a constant angular
separationA¢. This angular step depends on the number of harmoigghat must be
considered. The relation is:

(C.17)

In case of having@N + 1 samples over the whole rotation, we can employ the Fast
Fourier Transform to obtaia, ;. (A):

Cn.k, (A) = FFT<Ckz (ZA¢7 A))? (C18)
wherei = 0,1, ...,2N denote the samples.

In practice we only have samples over a portion of the azimuth rotation. As stated
in Chapter7, this is not a problem for the final result because the place into which the field
will be translated is close to the original cylindrical portion. The data can be completed with
zeros in the region with unknown field and then it is possible to employ the FFT as before.
A similar method could be employed for the Fourier transform alang

Note that a technique based on the chitpansform [L86, 187] has been used in both
cases on the actual implementation. This type of transform is more flexible and enables the
use of arbitrary ranges and sampling steps in both the original and the transformed domains.

Finally, a flow chart of the procedure that has been implemented is depicted ( Eig.
The algorithm is constituted by some nested loops. Note that both direct and inverse trans-
formations from: to k. are performed by FFT’s because both origin and destination domains
are equally spaced in those variables. Instead, the conversiomftom is carried out by
means of a summation because an uniform sampliggcorresponds to an unequal spacing

in ¢.
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V(fA.02)

For each |Kz|

Y
( FFT along @ ] [ |Kz| -> Kp -> H(E)(KDA)j
Cn,Kz(A)

For eachy e [y >p-> Hf)(Kpp)j

y > Q> expl @)

[ Summation along n j

v(ty.2)

Fig. C.1. Block diagram of the field translation from a cylindrical to a planar aperture
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Spherical Wave Formulation

NVERSE SAR (ISAR) is a common configuration at the EMSL for radar imaging mea-

surements. The data are collected for some elevation incidence angles while the target
Is rotated in azimuth. Therefore, the synthetic aperture is a portion of a sphere. As in the
cylindrical case described in Appendix these data can still be used by the 3-D RMA as
input backscattered fields by first translating them to a planar aperture.

Following the same procedure as in the cylindrical case, the transformation of the
field data from a spherical surface to other positions is accomplished by representing the field
as a summation of free-space modes, and the mode coefficients are determined by matching
the fields on the surface on which the fields are known. Once these coefficients are found,
the field can be computed elsewhere by using the modes summation.

In the following, SectiorD.1 presents the formal solution of the scalar wave equation
in spherical coordinates. Sectibn2 describes the steps of the coefficients computation from
the analytical view point, and also the practical implementation of this procedure, which is
based on Fourier techniques.

D.1 Solution to the Scalar Wave Equation in Spherical
Coordinates

By using the conventional spherical coordinate system, the scalar Helmholtz equation can be
written as [L85:

10 [ ,00 1 0 (. 0 1 0%
2 or ( 5) T 96 (W%) T ramgg TV =0 OD

Again, this wave equation can be solved by the method of separation of variables,
yielding the following elementary wave functions:

Y = by (kr) L) (cos 0)h(me), (D.2)
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whereh(m¢) are solutions of théarmonicequation,L” (cos #) are theassociate Legendre
functionsandb, (kr) are thespherical Bessel function#\ general solution of[§.1) can be
constructed as a linear combination of the elementary wave functions:

=Y Cunthmn (D.3)

Theharmonic functiorcan be chosen as a linear combinatiosinfm¢) andcos(ma),
or /™ ande~/™?, with m an integer. The complex exponentials have been preferred be-
cause they are more suited for a direct use of Fourier transforms. A study of the solutions
of the Legendre equation shows that/ifis finite in the range O tar, thenn must also be
an integer, and.”(cos #) must be theassociate Legendre functiafi first kind P (cos 0).
Finally, thespherical Bessel functioran be selected depending on the behavior of the wave
that it is representing. In our case, the radar signal is reflected from the target, so it can
be modeled as an outward-traveling wave. Therefayé;r) corresponds to thepherical
Hankel functiorof second kindsz)(kr). In conclusion, the elementary wave functions take
the form:

Vo = B (kr) P (cos ) ™2, (D.4)

with m andn integers.

The summation ind.3) is understood in this way:

B IEDID I ©9

n=0 m=—n

sinceP"(cos f) vanishes fotm| > n. In practice, the summations will be always truncated

at a valuen = N which depends on the radius of the minimum sphere, centered at the same
point of the measurement sphere, that contains all the scattering points of thel&ejelf |

the radius of the minimum sphere is nameggthe following empirical rule gives an estimate

for N:

N = [kro] +n1, (D.6)

where the square brackets denoteititeger part and the integer; depends on the accuracy
required. Note that is defined adx f /¢, according to the justification stated in Chapter

D.2 Practical Implementation

Some definitions about the associate Legendre functions, that will be needed in successive
derivations, are presented in first place. The analytical method for solving the coefficients of
the spherical modes summation is described later. Finally, the application of this method to
the practical case of sampled data is explained.
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D.2.1 Associate Legendre Functions

The associate Legendre functions have been defined in a few different ways in the litera-
ture, thus becoming necessary to state here which definition we are using. The definition
employed in the present work is the same & and [189:

, d"P,(cos®)
P — (—1)" sinm g 0 D.7
(cosf) = (—1)™ sin™ 0 dlcos By (D.7)
where
1 d" 5
P,(cos ) = ————(cos" 0 — 1)" (D.8)

~ 2°n! d(cosf)

is the Legendre polynomial. Another expression without(th&)™ factor is given in .84
and [L8(.

Since the values of the associate Legendre functions grow significantly with their
order, they cannot be represented with double precision numbers when their order is high.
To prevent this constraint the normalized associate Legendre functions must be employed:

P, (cosh) = \/2n2—l— ! EZ _T_ :Z;: P (cosb). (D.9)

Therefore, we will employ the normalized associate Legendre functions in all deriva-
tions. Two properties of these functions that will be required later are:

Orthogonality The normalized associate Legendre functions satisfy:

1
/ P (cos8) P, (cosB) d(cosf) = Sy, (D.10)

1
wherej,,;. is Kronecker’s deltad,, = 1 for n = k ando,,;, = 0 for n # k).
Fourier expansion The normalized associate Legendre functions can be Fourier expanded
in this way:
Pyl(cosf) =™ Y dppe® =" dy e (D.11)
p=—n p=-—n

The coefficients vanish fdp + n) odd, and they satisfy the recurrence relation:

n+p+2)(n—p—1)dnpt2 — 2(n* — p* +n — 2m2) A pt
n+p—1)(n—p+2)dny—2=0, (D.12)
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with the initial values

1 @20 [2n+1 1
dm’n—ﬁ n! 2 \/(n+m)!(n—m)! (D-13)

n — 2m?
2n — 1

D (D.14)

dm,n—2 -
Form = 0, the recurrence inX.12) takes the form:

(n+p)n—p+1)doy— (n+p—1)(n—p+2)dop 2 =0. (D.15)

D.2.2 Analytical Computation of the Coefficients c,, ,,

The following derivations are mainly based on the method presenté@iChapter 4], but

many particular considerations have been done in order to apply this technique to the scalar
wave equation instead of the vector one used in that book. From the previous sections we
can conclude that the field measured at a single frequency on a sphere ofrradidscan

be expressed as a linear combination of the elementary wave functions in the following way:

N n
YA, 0,0) =" > cpne’ P, (cos0) B (kA). (D.16)

n=0 m=—n

Since the associate Legendre functions satisfy Fjatcos§) = P. " (cos ) we

only will employ m positive for computing these functions. Moreover, we have extracted a
factor(m/|m|)™ from the coefficients in order to simplify their calculus asig(j, yielding:

(A 0.0 =Y En: Cn €9 (ﬁ>mﬁ;”(cose) K (kA), (D.17)

where (m/|m|)™ = 1 for m = 0. In this section we will show the analytical solution
of (D.17) for the unknowns, i.e. the coefficients ,,, by assuming that the field is known
on a sphere of radiud.

In the first step we exploit the orthogonality of the exponential function:

2
/ PP = 276, (D.18)
0
Let us rewrite D.17) as
N
U(A0,0) = D cm(A ), (D.19)

m=—N
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where N
en(A,0)= Y (%) P (cos0) h? (kA). (D.20)
n=|m|

As is evident from D.19), ¢,,,(A, 0) is a coefficient in the expansion ¢finto a finite
Fourier series inp. One can solvel§.19) for ¢,,(A, #) by multiplying both sides by /¢
and integrating with respect tofrom 0 to 27 :

21 27 N
/ V(A ¢,0) e PPdp = / [ > enlA,0) ejm¢] e Pdg = 2me,(A,0).  (D.21)
0 0 m=—N

Substituting for conveniengeby m, and rearranging, gives the transformed data:

2T
nld0) = 5 [ (A 0.0 a0, (D.22)

Therefore¢,,(A, ) is the Fourier transform along azimuth of the measureddata ¢, 9).

The next step consists in rewriting thetransformed formulald.20) in this way:

N m
en(A.0) = () (%) P (cos ), (D.23)
m
n=|m|
where
Cmn(A) = e O (A). (D.24)

Equation D.23) can be solved by applying the orthogonality of the normalized asso-
ciate Legendre function$(10), yielding:

Cmn(A) = ( ik )m /O " (A, 0) P (cos ) sin 06, (D.25)

[m|

Finally, the radial dependence can be removed from the coefficients by dividing by
the Hankel functions:
Cmn(A)

T2 ka) (029

Cmn

D.2.3 Discrete Computation of the Coefficients ¢, ,

In the former section we have derived the analytical expressions for the determination of
the coefficients of the summation of wave functions or harmonics. They have the form of
two integrals and a simple division. Here we will consider the question of calculating those
integrals by numerical methods. In fact, both of them are particularly simple, since they can
be evaluated by Fourier techniques.
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D.2.3.1 Integral in ¢

The ¢-integral was presented iD(22), beingc,,(A, #) = 0 for |m| > N. We now have to
determine,, (A, #) by evaluating the integral from sampleswfA, ¢, 0).

The samples are taken with a constant angular separation This angular step
depends on the number of harmonids,that must be considered§(. The relation is:
2
2N +1°

A < (D.27)

When we haveN + 1 samples over the whole rotation, we can employ the Fast
Fourier Transform to obtain,, (A, 6):

cm(A,0) = FFT(1(A,1A¢,0)), (D.28)
wherei =0, 1,...,2N denote the samples.

In practice, we only have samples over a portion of the azimuth rotation. In order to
calculatec,, (A, 0), the data can be completed with zeros in the region with unknown field
and then it is possible to employ the FFT as before. This assumption does not introduce
any significant error if the region into which the fields are translated is close to the original
aperture.

D.2.3.2 Integral in 0

Thef-integral is shown inD.25), wherec,,, ,(A) = 0 forn > N. We now have to determine
cmn(A) by evaluating the integral from samples@f(A, #). Here, again, the samples are
taken with a constant angular separatidé. This angular step depends on the number of
harmonics/V, that must be considered§(. The relation is:

2

Al < .
2N +1

(D.29)

Now the integral is not a simple Fourier Transform, but we can employ the Fourier
expansion of the associate Legendre functi@ng {) to exploit the efficiency of the compu-
tations with FFT's.

There is a second aspect to consider: the domain of thegle is only0 < 6 <
7, instead of ther complete rotation. However, by knowing that/|m|)™ P, (cos ) is
periodic inf with period27, and that its parity about = 7 is the same as: (odd if m is
odd, and even ifn is even), we can extend the data in the following way:

cm(A,0), 0<o<n
em(A,0) =< cn(A2r —0), w<60<2m, meven (D.30)
—cm(A2r —0), ®<60<27r, modd
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The extended dat@, (A, #) can be expanded into a finite Fourier series as,

N
Cn(A0) = > by (D.31)
I=—N

By substituting D.11) and ©.31) in (D.25) it gives,

T N n
Cmon(A) :/ Z e Z Ay p ¢ 797% sin OO (D.32)
0=0,—_n p=—n
N n T
=57 bt Y Ay / /=P sin Adf. (D.33)
I=—N p=—n =0

The integral in P.33) can be denoted &s(I — p), and has an analytical solution:

+j3, (I—p)==+1
G(l—p) =10, l—p|=3,57,... (D.34)
o =pl=0,2,4,...

Hence we arrive to the following expression:

N n
Cmn(A) =37 D bmi Y dmpG(l—Dp), (D.35)
[=—N

p=—n
where the only unknowns on the right-hand side are now the Fourier coeffiignts

A further study of the elements iD(35) yields an additional simplification. From
their definition, it is observed that:

bing = (—1)"bym (D.36)
dmp = (—1)"dp —p, (D.37)
and therefore,
bm,l dm,p = bm,—l dm,—p' (D38)
Since
G(l—p)=-G(p-1), (-p) ==l (D.39)

the terms with(! — p) = +1 cancel, and we can rewrite:

n N
Cnn(A) =37 dmp > T[T = P)bmas (D.40)
I=—N

p=-—n
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where
0, (I —p) odd
[10-» = { s (1—p)even (D.41)
and[[(l —p) =TI(p - 1)

Thel-summation inD.40) resembles, for each value @fa convolution between two
sequences. Hence, it can be evaluated efficiently by means of FFT’s. If the result is named
K,.(p), the final expression of the coefficients is:

p=—n

The complete procedure of the coefficients computation is described in the flow chart
drawn in Fig.D.1. The rectangles with dashed lines correspond to loops. Note that the
coefficients are explicitly available at the end of this process. This was not the case in the
translation from cylindrical to planar aperture because they were reused fon @achedi-
ately after their calculus. The retrieval of the field from the obtained spherical coefficients is
illustrated in Fig.D.2.
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W(A.8.9)

| For each m
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Fig. D.1. Block diagram of the coefficients computation from the field measured on a spherical
aperture
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Fig. D.2. Block diagram of field extraction from the previously computed coefficients in the spherical
case
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