
Image Coregistration in SAR Interferometry
only by means of Arithmetic Operations
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Abstract—An alternative interpolation technique for SAR im-
age coregistration in interferometric processing is formulated
and described. The proposed algorithm is based on the 1-
D Farrow interpolator and, when combined with an adequate
implementation, it involves a smaller computational burden than
the conventional method and yields high accuracy. Basically, this
technique enables to carry out the coregistration without resort-
ing to a set of functional weights, and it only requires arithmetic
operations and 2-D FFTs. This paper includes several results and
comparisons that confirm its validity: the proposed technique is
combined with two different polynomial interpolation procedures
(Taylor and Chebyshev); bounds on its interpolation error in the
1-D and 2-D cases are derived; and, additionally, it is tested
numerically with a synthetic image.

I. INTRODUCTION

One of the first steps in the processing chain required in
SAR interferometry is the coregistration of two SAR images.
Basically, the coregistration consists of interpolating a slave
image at a set of locations which correspond to the pixel lo-
cations of a different master image. Usually, this interpolation
is carried out by means of a space-domain convolution with a
kernel. Specifically, the slave image value at a given position
is interpolated using a weighted sum of the near-by samples,
in which the weights are kernel samples.

One of the problematic aspects of this procedure is how
to obtain the required sum weights (all kernel samples for
each location). Since to compute them as they are needed
would be very time consuming, the usual approach consists
of pre-computing the kernel in a very fine grid of positions
and storing the resulting values in a table. Then, during the
coregistration, to obtain a given weight only requires a look-up
operation. However, in applications in which extreme accuracy
is required, like advanced differential SAR interferometry
with permanent scatterers, this approach is too cumbersome
since the size of the stored data grows exponentially with the
required accuracy.

In this paper, we apply a different approach for this problem.
The rationale of this interpolator is to approximate every
kernel sample involved in the space-domain interpolation by a
low-order polynomial in the fractional displacement variable.
Once these polynomials have been inserted into the usual
convolution formula, it turns out that one may switch the con-
volution and polynomial evaluation operations. More precisely,
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if one considers the sequences formed by the polynomial
coefficients of equal order, then one would convolve the
signal with each sequence in this set. The result is a set of
polynomials in the fractional displacement variable, one for
each sample position, that accurately approximate the signal
in consecutive intervals of length equal to the sampling period.
With a proper implementation, this interpolation exhibits the
following features: it does not require the evaluation of any
kernel sample; it involves less floating-point operations (flops)
than the usual convolution method; its memory requirements
are small; and it is much faster than the usual method if the
image has to be over-sampled.

The formulation of this method is explained in Section II
for the one-dimensional case, and it is extended to the two-
dimensional case in Section IV. Its performance for InSAR
coregistration is analyzed in Section V.

II. INTERPOLATION OF ONE-DIMENSIONAL SIGNALS BY

MEANS OF THE FARROW STRUCTURE

Given a band-limited 1-D signal s(t) which is known at
t = nT for integer n, the conventional interpolation formula
has the form

s(t) =
P∑

p=−P

s((n − p)T )gp(u) + θo(t), (1)

under the following assumptions or definitions:

• The variable t is decomposed modulo T as t = nT + u
with integer n and −1/2T ≤ u < 1/2T .

• s(t) has two-sided bandwidth B and Nyquist condition
BT < 1 holds.

• gp(u) is a set of functions in the fractional shift u and
θo(t) is the interpolation error.

As is shown in [1]– [3], there are sets of weights gp(u) for
which the interpolation error is bounded, provided there is a
bound As on the signal samples, |s(t)| ≤ As.

The Farrow interpolator in [4] has been recently applied to
this interpolation problem in [5], [6]. When compared with
the conventional interpolation method in (1), this technique
eliminates the need to compute or store any set of functional
weights gp(u), and exhibits a smaller computational burden.

Basically, the Farrow interpolator is the result of substituting
into (1) a set of polynomial approximations for the weights
gp(u). Let g̃p(u) denote the polynomial approximation for



gp(u) with error φp(u); i.e., g̃p(u) is the polynomial

g̃p(u) ≡
Q∑

q=1

bp,qu
q−1, p = −P, . . . , P, (2)

and gp(u) and g̃p(u) are related by

gp(u) = g̃p(u) + φp(u). (3)

The Farrow interpolator is derived by substituting this last
equation into (1) and switching the summations:

s(t) =
P∑

p=−P

s((n − p)T )
( Q∑

q=1

bp,qu
q−1 + φp(u)

)
+ θo(t)

=
Q∑

q=1

uq−1
P∑

p=−P

s((n − p)T )bp,q (4)

+
( P∑

p=−P

s((n − p)T )φp(u) + θo(t).
)

Note that the inner summation in (4) is actually the convolution
of the sequence s[n] ≡ s(nT ) with the sequence

bq[n] ≡
{

bn,q if − P ≤ n < P
0 otherwise. (5)

So, it follows from (4) that it is possible to compute first the
convolutions (s ∗ bq)[n] through fast convolution techniques,
and then interpolate s(t) by simply evaluating a (Q − 1)-
order polynomial. In short, the Farrow interpolator technique
consists of the following steps:

1) Compute the convolutions

sq[n] ≡ (s ∗ bq)[n] (6)

for q = 1, . . . , Q.
2) Decompose each interpolation abscissa t modulo-T in

the form t = nT + u, with n = �t/T + 1/2� (floor
function) and u = t − nT .

3) The interpolated value is

s(t) ≈
Q−1∑
q=1

sq[n]uq. (7)

This interpolation procedure requires to convolve the se-
quence s[n] with the Q sequences bq[n]. Since these last
sequences are known a priori, these convolutions only involve
Q + 1 FFTs if they are carried out in the following way:

1) Add zero padding to s[n] and compute its FFT, S[k].
2) Multiply S[k] by each of the FFTs of bq[n], Bq[k]. Note

that the sequences B[k] can be pre-computed since they
are known a priori. The result is the set of sequences

Sq[k] ≡ S[k]Bq[k]. (8)

3) Compute the inverse FFT of the sequences Sq[k] in order
to obtain the polynomial coefficients sq[n] in (7).

III. BOUND ON THE INTERPOLATION ERROR IN THE

ONE-DIMENSIONAL CASE

Let θ(t) denote the error term in (4). A bound on θ(t) can be
easily derived from equations (2) and (3). If |θo(t)| is bounded
by AsεT for a constant εT (truncation error), then

|θ(t)| =
∣∣∣s(t) −

P∑
p=−P

s((n − p)T )g̃p(u)
∣∣∣

=
∣∣∣s(t) −

P∑
p=−P

s((n − p)T )(gp(u) − φp(u))
∣∣∣

=
∣∣∣θo(t) −

P∑
p=−P

s((n − p)T )φp(u)
∣∣∣

≤ |θo(t)| +
∣∣∣

P∑
p=−P

s((n − p)T )φp(u)
∣∣∣

≤ AsεT + As

P∑
p=−P

|φp(u)|.

(9)

If εP(u) denotes the summation

εP(u) ≡
P∑

p=−P

|φp(u)|, (10)

and εP is an upper bound on εP(u) for −T/2 ≤ u < T/2,

εP ≥ max
u

εP(u), (11)

then the total error can be bounded as

|θ(t)| ≤ As(εT + εP). (12)

So, the polynomial interpolation has increased the error bound
by AsεP. The value of εP depends on the selected interpolation
scheme as described in the next two sub-sections.

A. Specific bound assuming Taylor polynomials

Assume that the polynomials in (2) are truncated Taylor
expansions of order Q − 1 at u = 0. Then, it follows from
Taylor’s theorem that the approximation error is

φp(u) =
g(Q)

p (γ)
Q!

uQ (13)

for a γ that depends on u, |γ| ≤ T/2. In practice, the
weight functions gp(u) are bounded by a constant Ag and
they are band-limited with two-sided bandwidth Bg. If this is
assumed, Bernstein’s inequality [7, chap.6] provides a bound
on |g(Q)

p (γ)|,
|g(Q)

p (γ)| ≤ (πBg)QAg, (14)

and then maxp,u |φp(u)| can be bounded as

max
p,u

|φp(u)| ≤ Ag

Q!

(πBgT

2

)Q

. (15)

So, in (2), it follows that

max
u

P∑
p=−P

|φp(u)| ≤ Ag(2P + 1)
Q!

(πBgT

2

)Q

, (16)



and the right side of this inequality is a valid value for εP.
This bound demonstrates that the polynomial interpolation

procedure cannot fail, i.e., that it is possible to find a priori
bounds for the polynomial interpolation error for any bounded
band-limited signal. However, in practice, the numerical ap-
proximation through Chebyshev polynomials, which is ad-
dressed in the next subsection, yields better accuracy.

B. Bound for Chebyshev approximation assuming a specific
pulse

In order to assess the performance of the Chebyshev ap-
proximation, it is necessary to specify the interpolation pulse.
So, consider the formula in (1) with functional weights given
by gp(u) ≡ g(pT + u), where g(t) is the Approximate
Prolate pulse in [3]. In this reference, the error is bounded by
As/ sinh(Pπ(1 − BT )). For ERS images, it is B = 0.82/T .
If P = 10 then this bound is

As/ sinh(Pπ(1 − BT )) = As · 7 · 10−3. (17)

Figure 1(a) shows the polynomial interpolation error for this
pulse for all sub-ranges of the form [−T/2 + pT, T/2 + pT ]
for −P ≤ p ≤ P . The error is smaller than 10−4 in the whole
range. On the other hand, figure 1(b) shows the bound on the
polynomial interpolation error φP(u) for several polynomial
orders. For Q = 5, φp(u) is smaller than the bound in (17)
for the truncation error by roughly factor 2.5.

IV. EXTENSION TO THE TWO-DIMENSIONAL CASE

The interpolation procedure derived in the previous section
can be easily extended to the 2-D case. If s(x, y) denotes a
2-D signal with two-sided bandwidth B in both variables, then
it can be interpolated through a formula of the form

s(x, y) =
Q∑

qx,qy=1

sqx,qy [nx, ny]uqx−1
x uqy−1

y + θ(x, y),

(18)
assuming the following:

• D is a sampling period fullfilling BD < 1.
• The modulo-D decompositions of x and y are nx ≡

�x/D�, ux ≡ x−nxD, ny ≡ �y/D�, and uy ≡ y−nyD.
• sqx,qy [nx, ny] is the 2-D equivalent of sq[n]

sqx,qy [nx, ny] ≡
∑
px,py

s[nx − px, ny − py] bqx [px]bqy [py].

(19)
• The polynomial coefficients bq[n] are the same as in the

one-dimensional case.

Regarding the computational burden of the convolutions in
(19), it can be shown that only Q2 + Q + 1 FFTs along one
dimension are required. This justifies the fact that the proposed
method is less complex than the conventional one, even if the
functional weights have been pre-computed in the latter. For
implementation details see [6].
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(a) Error in approximating Knab’s pulse in range [−T/2 − PT, T/2 +
PT ]; i.e., the function plotted is φp(u) with p = �(t + 1/2)/T � and
u = t − pT .
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(b) Bound on polynomial interpolation error.

Fig. 1. 1(a) Polynomial interpolation error in range [−T/2−PT,T/2+PT ],
and 1(b) bound on the polynomial interpolation error

A. Bound on 2-D interpolation error

The interpolation formula for the 2-D signal s(x, y) in the
x variable is, from (1),

s(x, y) =
P∑

px=−P

s((nx − px)D, y)g̃p(ux) + θ1(x, y), (20)

where x = nxD + ux, nx is an integer and −D/2 ≤ ux <
D/2. In the same way, the interpolation formula in the y
variable is

s(x, y) =
P∑

py=−P

s(x, (ny − py)D)g̃p(uy) + θ2(x, y) (21)

with y = nyD + uy, integer ny and −D/2 ≤ uy < D/2. The
signal s((nx − px)D, y) in (20) can be interpolated in the y
variable, simply by substituting x = (nx − px)D in (21),

s((nx − px)D, y) =
P∑

py=−P

s( (nx − px)D,

(ny − py)D )g̃p(uy) + θ2((nx − px)D, y).

(22)
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Fig. 2. Extra factor due to the two-dimensional interpolation in (25), Ag̃,
versus Q for P = 10 and B = 0.82/T .

So, substituting this expression into (20), the following 2-D
interpolation formula follows

s(x, y) =
∑
px

[∑
py

s((nx − px)D, (ny − py)D)g̃py(uy)

+θ2((nx − px)D, y)
]
g̃px(ux) + θ1(x, y)

=
∑
px

∑
py

s((nx − px)D, (ny − py)D)g̃py(uy)g̃px(ux)

+
∑
px

θ2((nx − px)D, y)g̃px(ux) + θ1(x, y).

(23)
Now, θ1(x, y) and θ2(x, y) are bounded by As(εT + εP). If
θ(x, y) denotes the last line in (23), this error can be bounded
in the following way:

|θ(x, y)| =
∣∣∣∑

px

θ2((nx − px)D, y)g̃px(ux)

+θ1(x, y)
∣∣∣ ≤ As(εT + εP)

(
1 +

∑
px

|g̃px(ux)|
)
.

(24)

If Ag̃ is the maximum value of the last factor, Ag̃ ≡ 1 +
maxux

∑P
px=−P |g̃px(ux)|, the final bound yields

|θ(x, y)| ≤ As(εT + εP)Ag̃. (25)

Figure 2 shows the value of Ag̃ as a function of Q for
P = 10 and B = 0.82/T . Note that the precision lost relative
to the one-dimensional case is only factor 3.2.

V. COMPUTATIONAL BURDEN VERSUS ACCURACY

The relationship between the numerical accuracy and the
computational burden has already been analyzed in [6]. For
the numerical example in this paper (P = 10, B = 0.82/T ),
figure 3 shows the number flops per interpolated point for the
proposed and the conventional methods. The image had size
Lx×Ly = 200×200 and was formed by randomly placing 80
sinc pulses of amplitude one and random phase on the image
extent. Then, it was interpolated at α2LxLy locations.

From this figure it is clear that the number of flops per
interpolated point decreases dramatically with α (coregistra-
tion ratio). With Q = 5, the numerical trials show that
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Fig. 3. Computational burden per interpolated point for several coregistration
ratios α. The dashed horizontal line is the cost of the conventional method.

the conventional (dashed line) and the proposed interpolation
methods provide similar accuracies, but the proposed one
requires less flops even for α = 1 (no over-sampling). In
addition, it must be noted that this comparison is biased in
favor of the conventional method in two ways. First, the cost of
computing the functional weights in the conventional method
is taken as zero. And second, the cost of one N -point FFT
is assumed to be 5N log2 N , but there are faster algorithms
like the split-radix FFT in [8] where its cost is reduced to
3.9N log2 N .

VI. CONCLUSION

An interpolation method for the coregistration of SAR
images has been presented. It can be regarded as an exten-
sion of the Farrow interpolator to the two-dimensional case.
The proposed technique is useful for any given kernel, but
eliminating the need to store or evaluate any kernel sample.
Its implementation only involves 2-D FFTs and arithmetic
operations. It is shown in this paper that the computational
burden of this technique is smaller than the one of the
conventional spatial convolution.
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