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Abstract  

This paper presents an analysis of the performance of TerraSAR-X for subsidence monitoring in urban areas. The 

city of Murcia has been selected as a test-site due to its high deformation rate and the set of extensometers de-

ployed along the city that provide validation data. The obtained results have been compared with those obtained 

from ERS/ENVISAT data belonging to the same period and validated with the in-situ measurements. 

 

1 Introduction 

Orbital DInSAR is a technique widely used to survey 

the surface of the Earth and monitor hazards due to 

natural and human agents, such as earthquakes or min-

ing [1][2][3]. Nowadays, there are a large number of 

satellites in orbit carrying SAR instruments able to 

perform this monitoring. In this work we will make a 

comparison of the results of urban subsidence moni-

toring obtained using data from veteran satellites 

ERS-2 and ENVISAT and the new satellite TerraSAR-

X. The objective of the paper is to compare the per-

formance of each system under different aspects, such 

as the management and detection of different kinds of 

targets (distributed or deterministic), the preservation 

of the coherence/phase stability and its temporal evo-

lution, and a comparison of the deformation results 

using each set of data. 

2 The Coherent Pixels Tech-
nique (CPT) 

The Coherent Pixels Technique has been widely used 

for monitoring urban subsidence [3]. The algorithm 

can use both coherence and amplitude stability criteria 

to perform pixels selection. The former is more suited 

for detecting stable distributed targets and the latter 

for detecting the so-called Permanent Scatterers (PS). 

The retrieval of the deformation time-series is done in 

two steps. Firstly, a linear model adjustment to data 

provides the linear velocity of deformation, the DEM 

error and the azimuth position of the PS (only for am-

plitude-based processing when large Dopplers are pre-

sent). Secondly, the non-linear processing retrieves the 

non-linear deformation and the atmospheric phase 

screen for each image. 

3 The city of Murcia test-site 

Subsidence has occurred in the metropolitan area of 

Murcia City (SE Spain) as a result of soil consolida-

tion due to piezometric level depletion caused by ex-

cessive pumping of groundwater. The study area is 

part of Segura River valley located in the oriental sec-

tor of the Betic Cordillera. Permian and Triassic de-

formed materials corresponding to the Internal Zones 

of the Betic Cordillera make up the basement. The ba-

sin filling comprises Upper Miocene to Quaternary 

sediment fluvial deposits. Younger sediments are 

highly compressible and the most problematic from a 

geotechnical point of view [4]. They constitute an aq-

uifer system that is divided in two units. The superfi-

cial aquifer reaches 30 meters below the surface, and 

it is formed by recent clay, silt and sands facies. The 

deep aquifer, located below, is composed of a se-

quence of gravels and sands alternating with confined 

silt and clay layers. Subsidence is triggered by the ex-

cessive water pumping of the first layer of deep aqui-

fer. In fact a piezometric level decline between 5 and 

15 m was measured on this layer during recent 
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drought periods: 1980–1983, 1993–1995 and 2005–

2008. After the second drought period, ground subsi-

dence was triggered causing damages in buildings and 

other structures with an estimated cost of 50 million 

Euros, generating a significant social impact. As a 

consequence, a permanent monitoring has been car-

ried out since then, by using an extensometer network 

since 2001 and also through the application of differ-

ent PSI [5]. Figure 1 shows the distribution of the 

compressible thickness and the maximum ground-

water depletion in the period 2004-2008 and the wells 

distributed along the city. 

 

(a)     

(b)     
 

Figure 1 (a) Geology with superposition of the distri-

bution of the compressible thickness (red circles) and 

the maximum groundwater depletion in the period 

2004-2008 (blue circles). (b)  Subsidence rate meas-

ured from TerraSAR-X dataset interpolated for every 

building block of the city and location of the different 

types of wells 

4 TerraSAR-X and 
ERS/ENVISAT datasets com-
parison 

From one side, the results presented in this work have 

been obtained with 39 TerraSAR-X images acquired 

during the temporal interval comprised from 

28/06/2008 to 25/11/2009. From the dataset of 39 Ter-

raSAR-X images, interferograms have been generated 

with spatial baselines ranging from 7 m to 295 m. 

From the other side, 4 ERS and 14 ENVISAT images 

covering the period from 28/06/2008 to 05/12/2009 

have been used for comparison purposes. From them, 

4 interferograms ERS and 44 ENVISAT have been 

formed with baselines ranging from 3 m to 203 m. The 

reduced number of images for the latter case does not 

allow to retrieve a very reliable non-linear deforma-

tion pattern and thus comparison between the two 

datasets has been limited to the linear velocity of de-

formation. In the processing different types of pixel 

selection methods have been used, such as coherence 

or amplitude stability. The different methods have al-

lowed the identification of different types of targets, 

from deterministic to distributed. In some cases, and 

due to the different resolutions of the images, different 

behaviours can be observed in the same area depend-

ing on the sensor used. 

 

(a)     

(b)     

Figure 2 Linear velocity retrieved for Murcia test-site 

using (a) TerraSAR-X and (b) ERS/ENVISAT data. 

 

In order to compare results retrieved from both data-

sets the study area has been divided into six zones, see 

Figure 2 (a). The deformation results are very similar 

for both sensors, i.e. subsidence areas are found in the 

same places and with similar rates, as it can be seen in 

Figure 2. The main differences are highlighted on par-

ticular deformations that can be detected with Ter-

raSAR-X, thanks to its better resolution, but cannot be 
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seen with ERS/ENVISAT data. For instance some 

buildings that were hardly identifiable in the 

ERS/ENVISAT results are clearly seen with Ter-

raSAR-X as shown in the example of Figure 3. 
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Figure 3 Deformation in a group of buildings near 

Segura River. The benefits of the higher resolution of 

TerraSAR-X can be clearly seen. 

Another interesting example of the excellent perform-

ance of TerraSAR-X for monitoring civil infrastruc-

tures can be seen in Figure 4. The deformation is de-

tected on the access ramps of the bridge, which do not 

have such strong and deep foundations as the bridge 

over the highway. The piles of the bridge make this 

part of the structure less susceptible to experiment set-

tlements, and hence measured deformation on the 

bridge is below 5 mm/year, which is the lowest value 

along it. This phenomenon is a common problem due 

to the construction technique employed. 
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Figure 4 Detail of the bridge over the highway. The 

deformation on the access ramps is clearly visible 

while the bridge itself is perfectly stable as seen in the 

deformation profile along the bridge. 

 

  Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 

X-band 
[CPs/km2] 

1999 2662 4180 1461 2762 1217 

C-band 
[CPs/km2] 

226 253 269 212 243 206 

Def. TSX 
[mm/year] 

-7.3 ± 
4.3 

-7.1 ± 
5.3 

-3.6 ± 
2.3 

-2.8 ± 
3.4 

-1.9 ± 
2.4 

-1.6 ± 
3.6 

Def. Envisat 
[mm/year] 

-5.7 ± 
5.7 

-6.9 ± 
5.3 

-1.6 ± 
3.1 

-2.6 ± 
4.7 

-0.8 ± 
3.8 

-2.7 ± 
4.8 

Difference 
[mm/year] 

1.6 ± 
1.4 

0.2 ± 
0 

1.9 ± 
0.8 

0.2 ± 
1.3 

1.1 ± 
1.4 

1.1 ± 
1.2 

Nº. Geotech. 
Boreholes 

57 79 66 3 177 2 

Soft soil thick-
ness [m] 

14.9 ± 
7.1 

14.7 ± 
5.4 

11.1 ± 
4.7 

10.2 ± 
4.0 

14.1 ± 
5.6 

22.9 ± 
1.8 

Piez. Var. 04-
08 [m] 

-9.2 -8.9 -6.6 -8.4 -4.8  

Piez. Var. 08-
09 [m] 

+3.2 +3.3 +2.9 +2.5 +0.5  

Table 1 Results of the analysis made in each of the six 

zones defined in Murcia City. 

 

In the first two rows of Table 1 we observe that there 

is a greater variation of the density of the CPs detected 

in each of the six zones for the X-band dataset than for 

the C-band, e.g. in the city centre (zone 3 in Figure 2 
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(a)) X-band provided 4180 CPs/km2 against 267 

CPs/km2 in the case of the C-band, whereas in a sub-

urban and agricultural area (zone 6 in Figure 2 (a)) 

this relation was 1217 against 206 CPs/km2. This dif-

ference can be explained considering the nature of the 

microwave signal: the wavelength of C-band is 5.6 cm 

while at X-band is 3 cm. The shorter the wavelength 

the more sensitive is the interferometric phase to the 

different decorrelation factors induced by changes in 

the scene. Thus, C-band data is able to provide a bet-

ter coverage in non-urban areas with bare soil or low 

vegetation. On the contrary and for this same reason, 

in urban areas the better resolution of X-band data is 

able to provide a greater amount of observations. The 

average and standard deviation of the subsidence rate 

of all the CPs included within each of these zones 

(rows 3 and 4 in Tab.2) show that the difference be-

tween measured displacements from X- and C-band 

datasets is 1.0 ± 1.2 mm/year. 

5 Conclusions 

The Coherent Pixel Technique (CPT) has been suc-

cessfully used to detect and monitor recent subsidence 

affecting Murcia city by exploiting and comparing two 

datasets available from C- and X-band satellite radars.  

The X-band data yielded a much denser measurement 

point distribution but a lower spatial coverage, being 

more adequate for local deformation phenomena 

analysis than the C-band, especially if we consider the 

higher cost of the SAR images of the former. The spa-

tial distribution and the magnitude of measured de-

formation rate have been proven to be very similar by 

comparing both datasets (1.0 ± 1.2 mm/year) for every 

proposed zone, as well as for every C-band pixel. It 

has been observed that 74 % of the C-band CPs meas-

urements coincide with the range of X-band CPs 

measurements ± 1 mm/year. On the other hand, the 

comparison of X-band and extensometer measure-

ments indicates their capability for detecting sensible 

variations of small ground surface deformations. 

 

The spatial analysis of X-band measured subsidence 

has permitted to demonstrate that settlement areas are 

located within the flood plain of the valley close to the 

River Segura where: the soft soil is thicker, the maxi-

mum piezometric decline has occurred; and the agri-

cultural and drought pumping wells are located. The 

comparison of C- and X-band displacement time se-

ries with the piezometric temporal evolution has per-

mitted to demonstrate that the 11 days temporal sam-

pling of the X-band dataset permits to detect seasonal 

variations of ground surface displacement that cannot 

be detected with the C-band analysis. 

 

Finally one example of ground surface deformation 

analysis in infrastructures has been presented. This 

example illustrates that the X-band spatial resolution 

permits to identify the differential settlement caused 

when the foundations of buildings and infrastructures 

off different types are joined, such as the settlement 

mechanisms governing the different parts of the high-

way bridge. 
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